[1] Ackermann, N., Bartsch, T., Kaplický, P., Quittner, P.:
A priori bounds, nodal equilibria and connecting orbits in indefinite superlinear parabolic problems. Trans. Am. Math. Soc. 360 (2008), 3493-3539.
DOI 10.1090/S0002-9947-08-04404-8 |
MR 2386234
[2] Amann, H.:
Existence and regularity for semilinear parabolic evolution equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 11 (1984), 593-676.
MR 0808425 |
Zbl 0625.35045
[3] Andreucci, D., DiBenedetto, E.:
On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 363-441.
MR 1145316
[5] Bidaut-Véron, M. F.:
Initial blow-up for the solutions of a semilinear parabolic equation with source term. In: Équations aux dérivées partielles et applications 189-198 Gauthier-Villars, Éd. Sci. Méd. Elsevier Paris (1998).
MR 1648222
[6] Cabré, X.:
On the Alexandroff-Bakel man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 48 (1995), 539-570.
DOI 10.1002/cpa.3160480504 |
MR 1329831
[7] Du, Y., Li, S.:
Nonlinear Liouville theorems and a priori estimates for indefinite superlinear elliptic equations. Adv. Diff. Equ. 10 (2005), 841-860.
MR 2150868 |
Zbl 1161.35388
[8] Farina, A.:
Liouville-type theorems for elliptic problems. Handbook of differential equations: Stationary partial differential equations, Vol. {IV} M. Chipot 60-116 Elsevier/North-Holland Amsterdam (2007).
MR 2569331 |
Zbl 1191.35128
[10] Fila, M., Souplet, P., Weissler, F. B.:
Linear and nonlinear heat equations in {$L\sp q\sb \delta$} spaces and universal bounds for global solutions. Math. Ann. 320 (2001), 87-113.
DOI 10.1007/PL00004471 |
MR 1835063
[16] Gilbarg, D., Trudinger, N. S.:
Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer Berlin (2001). Reprint of the 1998 edition.
MR 1814364
[17] Herrero, M. A., Velázquez, J. J. L.:
Blow-up behaviour of one-dimensional semilinear parabolic equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993), 131-189.
DOI 10.1016/S0294-1449(16)30217-7 |
MR 1220032
[18] Krylov, N. V.:
Nonlinear Elliptic and Parabolic Equations of the Second Order. Mathematics and its Applications (Soviet Series). Vol. 7. D. Reidel Publishing Co. Dordrecht (1987).
MR 0901759
[19] Lieberman, G. M.:
Second Order Parabolic Differential Equations. World Scientific Publishing Co. River Edge, NJ (1996).
MR 1465184 |
Zbl 0884.35001
[20] López-Gómez, J., Quittner, P.:
Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete Contin. Dyn. Syst. 14 (2006), 169-186.
MR 2170308
[21] Lunardi, A.:
Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications. Vol. 16. Birkhäuser Basel (1995).
MR 1329547
[23] Poláčik, P., Quittner, P.:
Liouville type theorems and complete blow-up for indefinite superlinear parabolic equations. In: Nonlinear elliptic and parabolic problems. Progr. Nonlinear Differential Equations Appl., Vol. 64 391-402 Birkhäuser Basel (2005).
DOI 10.1007/3-7643-7385-7_22 |
MR 2185228
[24] Poláčik, P., Quittner, P.:
A Liouville-type theorem and the decay of radial solutions of a semilinear heat equation. Nonlinear Anal. 64 (2006), 1679-1689.
MR 2197355
[25] Poláčik, P., Quittner, P., Souplet, P.:
Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139 (2007), 555-579.
DOI 10.1215/S0012-7094-07-13935-8 |
MR 2350853
[26] Poláčik, P., Quittner, P., Souplet, P.:
Singularity and decay estimates in superlinear problems via Liouville-type theorems. {II}. Parabolic equations. Indiana Univ. Math. J. 56 (2007), 879-908.
DOI 10.1512/iumj.2007.56.2911 |
MR 2317549
[28] Quittner, P., Souplet, P.:
Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser Basel (2007).
MR 2346798