Previous |  Up |  Next

Article

Keywords:
planar harmonic mapping; extreme point; subordination; weak subordination; class $N$
Summary:
The aim of the paper is to discuss the extreme points of subordination and weak subordination families of harmonic mappings. Several necessary conditions and sufficient conditions for harmonic mappings to be extreme points of the corresponding families are established.
References:
[1] Abu-Muhanna, Y.: On extreme points of subordination families. Proc. Amer. Math. Soc. 87 (1983), 439-443. DOI 10.1090/S0002-9939-1983-0684634-5 | MR 0684634
[2] Abu-Muhanna, Y., Hallenbeck, D. J.: Subordination families and extreme points. Trans. Amer. Math. Soc. 308 (1988), 83-89. DOI 10.1090/S0002-9947-1988-0946431-1 | MR 0946431 | Zbl 0651.30019
[3] Dihan, N. A.: Some subordination results and coefficient estimates for certain classes of analytic functions. Mathematica 49 (2007), 3-12. MR 2364024 | Zbl 1174.30005
[4] Duren, P.: Theory of $H^p$ Spaces. Academic Press, New York, San Francisco, London (1970). MR 0268655
[5] Duren, P.: Univalent Functions. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo (1983). MR 0708494 | Zbl 0514.30001
[6] Duren, P.: Harmonic Mappings in the Plane. Cambridge university Press, New York (2004). MR 2048384 | Zbl 1055.31001
[7] Hallenbeck, D. J., Hallenbeck, K. T.: Classes of analytic functions subordinate to convex functions and extreme points. J. Math. Anal. Appl. 282 (2003), 792-800. DOI 10.1016/S0022-247X(03)00257-9 | MR 1989687 | Zbl 1025.30011
[8] Hallenbeck, D. J., Macgregor, T. H.: Subordination and extreme-point theory. Pacific J. Math. 50 (1974), 455-468. DOI 10.2140/pjm.1974.50.455 | MR 0361035 | Zbl 0258.30015
[9] MacGregor, T. H.: Applications of extreme-point theory to univalent functions. Michigan Math. J. 19 (1972), 361-376. DOI 10.1307/mmj/1029000948 | MR 0311885 | Zbl 0257.30017
[10] Muir, S.: Weak subordination for convex univalent harmonic functions. J. Math. Anal. Appl. 348 (2008), 862-871. DOI 10.1016/j.jmaa.2008.08.015 | MR 2446041
[11] Ryff, J. V.: Subordinate $H^p$ functions. Duke Math. J. 33 (1966), 347-354. DOI 10.1215/S0012-7094-66-03340-0 | MR 0192062
[12] Schaubroeck, L. E.: Subordination of planar harmonic functions. Complex Variables 41 (2000), 163-178. DOI 10.1080/17476930008815245 | MR 1760169 | Zbl 1020.30021
[13] Srivastava, H. M., Sümer, E. Sevtap: Some applications of a subordination theorem for a class of analytic functions. Appl. Math. Lett. 21 (2008), 394-399. DOI 10.1016/j.aml.2007.02.032 | MR 2406520
[14] Tkaczyńska, K.: On extreme points of subordination families with a convex majorant. J. Math. Anal. Appl. 145 (1990), 216-231. DOI 10.1016/0022-247X(90)90442-I | MR 1031186
[15] Lin, Z.: Subordination of analytic functions. Chinese Acta. Sci. Natur. Univ. Sunyatseni 29 (1990), 44-48. MR 1075847
Partner of
EuDML logo