Previous |  Up |  Next

Article

Keywords:
half-linear differential equation; asymptotic formula; principal solution
Summary:
We establish a Hartman type asymptotic formula for nonoscillatory solutions of the half-linear second order differential equation \[ \left(r(t)\Phi (y^{\prime })\right)^{\prime }+c(t)\Phi (y)=0\,,\quad \Phi (y):=|y|^{p-2}y\,,\ p>1\,. \]
References:
[1] Agarwal, R. P., Grace, S. R., O’Regan, D.: Oscillation Theory of Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations. Kluwer Academic Publishers, Dordrecht–Boston–London, 2002. MR 2091751
[2] Cecchi, M., Došlá, Z., Marini, M.: Half-linear equations and characteristic properties of the principal solution. J. Differential Equations 18 (2005), 1243–1256. MR 2174819 | Zbl 1069.34048
[3] Chernyavskaya, N. A., Shuster, L.: Conditions for solvability of the Hartman-Wintner problem in terms of coefficients. Proc. Edinburgh Math. Soc. (2) 46 (2003), 687–702. MR 2013962 | Zbl 1045.34028
[4] Došlá, Z., Došlý, O.: Principal and nonprincipal solutions in oscillation theory of half-linear differential equations. Electron. J. Qual. Theory Differ. Equ. 2008 (10) (2008), 1–14.
[5] Došlý, O.: Half-Linear Differential Equations. Handbook of Differential Equations: Ordinary Differential Equations (Cañada, A., Drábek, P., Fonda, A., eds.), vol. I, Elsevier, Amsterdam, 2004, pp. 161–357. MR 2166491 | Zbl 1090.34027
[6] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North Holland Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903 | Zbl 1090.34001
[7] Došlý, O., Ünal, M.: Conditionally oscillatory half-linear differential equations. Acta Math. Hungar. 120 (2008), 147–163. DOI 10.1007/s10474-007-7120-4 | MR 2431365 | Zbl 1199.34169
[8] Došlý, O., Ünal, M.: Nonprincipal solutions of half-linear second order differential equations. Nonlinear Anal. 71 (2009), 4026–4033. DOI 10.1016/j.na.2009.02.085 | MR 2536309 | Zbl 1173.34320
[9] Elbert, Á., Kusano, T.: Principal solutions of nonoscillatory half-linear differential equations. Adv. Math. Sci. Appl. 18 (1998), 745–759.
[10] Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia, 1982. MR 1929104 | Zbl 0476.34002
[11] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. DOI 10.1007/BF03322729 | MR 1962855 | Zbl 1047.34034
[12] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions. Nonlinear Anal. 64 (2006), 762–787. DOI 10.1016/j.na.2005.05.045 | MR 2197094 | Zbl 1103.34017
[13] Mirzov, J. D.: Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
[14] Pátíková, Z.: Asymptotic formulas for non-oscillatory solutions of perturbed half-linear Euler equation. Nonlinear Anal. 69 (2008), 3281–3290. DOI 10.1016/j.na.2007.09.017 | MR 2450537 | Zbl 1158.34027
[15] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations. Proc. Amer. Math. Soc. 97 (1986), 423–428. DOI 10.1090/S0002-9939-1986-0840623-1 | MR 0840623
[16] Trench, W. F.: Linear perturbations of nonoscillatory second order differential equations II. Proc. Amer. Math. Soc. 131 (2003), 1415–1422. DOI 10.1090/S0002-9939-02-06682-0 | MR 1949871
Partner of
EuDML logo