[1] Ambrosio L., Fusco N., Pallara D.:
Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, Clarendon Press, Oxford, 2000.
MR 1857292 |
Zbl 0957.49001
[2] Ball J.M.:
A version of the fundamental theorem of Young measures. in Partial Differential Equations and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod, editors, Lecture Notes in Physics, 334, Springer, Berlin, 1989, pp. 207–215.
MR 1036070
[3] Ball J.M., James R.D.: Proposed experimental test of a theory of fine microstructure and the two-well problem. Philosophical Transactions: Physical Sciences and Engineering, 338 (1992), no. 1650, 389–450.
[5] Dacorogna B., Marcellini P.:
Implicit Partial Differential Equations. Progress in Nonlinear Differential Equations and their Applications, 37, Birkhäuser, Basel, 1999.
MR 1702252 |
Zbl 0939.49013
[6] DiBenedetto E., Herrero M.A.:
Non-negative solutions of the evolution $p$-Laplacian equation. Initial traces and Cauchy problem when $1. Arch. Rational Mech. Anal. 111 (1990), 225–290. DOI 10.1007/BF00400111 | MR 1066761 | Zbl 0726.35066
[7] DiBenedetto E., Urbano J.M., Vespri V.:
Current issues on singular and degenerate evolution equations. in Handbook of Differential Equations 1. Evolutionary Equations, C. Dafermos and E. Feireisel, editors, Elsevier, Amsterdam, 2004, pp. 169–286.
MR 2103698 |
Zbl 1082.35002
[8] Evans L.C.:
Partial Differential Equations. Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, Rhode Island, 2002.
MR 1625845 |
Zbl 1194.35001
[9] Evans L.C., Gariepy R.F.:
Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1992.
MR 1158660 |
Zbl 0804.28001
[10] Höllig K.:
Existence of infinitely many solutions for a forward backward heat equation. Trans. Amer. Math. Soc. 278 (1983), no. 1, 299–316.
DOI 10.2307/1999317 |
MR 0697076
[11] Iagar R.G., Sánchez A., Vázquez J.L.:
Radial equivalence for the two basic nonlinear degenerate diffusion equations. J. Math. Pures Appl. (9) 89 (2008), no. 1, 1–24.
MR 2378087
[14] Kirchheim B.: Rigidity and Geometry of Microstructures. Lecture Notes, MPI for Mathematics in the Sciences, Leipzig, 2003.
[15] Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N.:
Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, R.I., 1968.
MR 0241822
[16] Müller S., Šverák V.:
Unexpected solutions of first and second order partial differential equations. Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), pp. 691–702.
MR 1648117
[18] Pedregal P.:
Parametrized Measures and Variational Principles. Progress in Nonlinear Differential Equations and their Applications, 30, Birkhäuser, Basel, 1997.
MR 1452107 |
Zbl 0879.49017
[19] Perona P., Malik J.:
Scale-space and edge detection using anisotropic diffusion. Pattern Analysis and Machine Intelligence 12 (1990), no. 7, 629–639.
DOI 10.1109/34.56205
[20] A. Rodriguez A., Vázquez J.:
Obstructions to existence in fast-diffusion equations. J. Differential Equations 184 (2002), no. 2, 348–385.
DOI 10.1006/jdeq.2001.4144 |
MR 1929882
[21] Saks S.:
Theory of the Integral. second edition, Hafner, New York, 1937.
Zbl 0017.30004
[22] Schadewaldt N.: Lipschitz solutions for a one-dimensional fast diffusion equation. Ph.D. Thesis, Dr. Hut Verlag, 2009.
[24] Tartar L.:
Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, IV, Research Notes in Mathematics, 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212.
MR 0584398 |
Zbl 0437.35004
[25] Vázquez J.L.:
Smoothing and Decay Estimates for Nonlinear Diffusion Equations – Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and its Applications, 33, Oxford University Press, Oxford, 2006.
MR 2282669
[26] Vázquez J.L.:
The Porous Medium Equation – Mathematical Theory. Oxford Mathematical Monographs, Clarendon Press, Oxford, 2007.
MR 2286292
[29] Zhang K.:
On the principle of controlled $L^\infty $ convergence implies almost everywhere convergence for gradients. Commun. Contemp. Math. 9 (2007), no. 1, 21–30.
DOI 10.1142/S0219199707002320 |
MR 2293558