Previous |  Up |  Next

Article

Keywords:
AP; WAP; door; submaximal; nodec; unique sequential limit
Summary:
The definitions of AP and WAP were originated in categorical topology by A. Pultr and A. Tozzi, Equationally closed subframes and representation of quotient spaces, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 167-183. In general, we have the implications: $T_2\Rightarrow KC \Rightarrow US \Rightarrow T_1$, where $KC$ is defined as the property that every compact subset is closed and $US$ is defined as the property that every convergent sequence has at most one limit. And a space is called submaximal if every dense subset is open. In this paper, we prove that: (1) every AP $T_1$-space is $US$, (2) every nodec WAP $T_1$-space is submaximal, (3) every submaximal and collectionwise Hausdorff space is AP. We obtain that, as corollaries, (1) every countably compact (or compact or sequentially compact) AP $T_1$-space is Fréchet-Urysohn and $US$, which is a generalization of Hong's result in On spaces in which compact-like sets are closed, and related spaces, Commun. Korean Math. Soc. 22 (2007), no. 2, 297-303, (2) if a space is nodec and $T_3$, then submaximality, AP and WAP are equivalent. Finally, we prove, by giving several counterexamples, that (1) in the statement that every submaximal $T_3$-space is AP, the condition $T_3$ is necessary and (2) there is no implication between nodec and WAP.
References:
[1] Adams M.E., Belaid K., Dridi L., Echi O.: Submaximal and spectral spaces. Math. Proc. R. Ir. Acad. 108 (2008), no. 2, 137–147. DOI 10.3318/PRIA.2008.108.2.137 | MR 2475807 | Zbl 1171.54019
[2] Arhangel'skii A.V., Collins P.J.: On submaximal spaces. Topology Appl. 64 (1995), no. 3, 219–241. DOI 10.1016/0166-8641(94)00093-I | MR 1342519
[3] Arhangel'skii A.V., Pontryagin L.S. (eds.): General Topology I. Encyclopaedia of Mathematical Sciences, 17, Springer, Berlin, 1990. MR 1077251
[4] Bella A.: On spaces with the property of weak approximation by points. Comment. Math. Univ. Carolin. 35 (1994), no. 2, 357–360. MR 1286582 | Zbl 0808.54007
[5] Bella A., Costantini C.: Minimal KC spaces are compact. Topology Appl. 155 (2008), no. 13, 1426–1429. DOI 10.1016/j.topol.2008.04.005 | MR 2427414 | Zbl 1145.54014
[6] Bella A., Yaschenko I.V.: On AP and WAP spaces. Comment. Math. Univ. Carolin. 40 (1999), no. 3, 531–536. MR 1732483 | Zbl 1010.54040
[7] Bezhanishvili G., Esakia L., Gabelaia D.: Some results on modal axiomatization and definability for topological spaces. Studia Logica 81 (2005), no. 3, 3250-355. DOI 10.1007/s11225-005-4648-6 | MR 2195500 | Zbl 1096.03016
[8] Bourbaki N.: General Topology, Part I. Addison-Wesley Pub. Co., Hermann, Paris, 1966.
[9] Cho Myung Hyun: Discovering Modern General Topology. Kyung Moon Publishers, Seoul, 2001.
[10] Dontchev J.: On door spaces. Indian J. Pure Appl. Math. 26 (1995), no. 9, 873–881. MR 1347535 | Zbl 0835.54003
[11] van Douwen E.K.: Applications of maximal topologies. Topology Appl. 51 (1993), no. 2, 125–139. DOI 10.1016/0166-8641(93)90145-4 | MR 1229708 | Zbl 0845.54028
[12] Dow A., Tkachenko M.G., Tkachuk V.V., Wilson R.G.: Topologies generated by discrete subspaces. Glas. Math. Ser. III 37(57) (2002), no. 1, 187–210. MR 1918105 | Zbl 1009.54005
[13] Dugundji J.: Topology. Allyn and Bacon, Inc., Boston, 1966. MR 0193606 | Zbl 0397.54003
[14] Franklin S.P.: Spaces in which sequences suffice II. Fund. Math. 61 (1967), 51–56. MR 0222832 | Zbl 0168.43502
[15] Hong W.C.: Generalized Fréchet-Urysohn spaces. J. Korean Math. Soc. 44 (2007), no. 2, 261–273. DOI 10.4134/JKMS.2007.44.2.261 | MR 2295388 | Zbl 1143.54001
[16] Hong W.C.: On spaces in which compact-like sets are closed, and related spaces. Commun. Korean Math. Soc. 22 (2007), no. 2, 297–303. DOI 10.4134/CKMS.2007.22.2.297 | MR 2313452 | Zbl 1168.54304
[17] Ismail M., Nyikos P.: On spaces in which countably compact sets are closed, and hereditary properties. Topology Appl. 11 (1980), no. 3, 281–292. DOI 10.1016/0166-8641(80)90027-9 | MR 0585273 | Zbl 0434.54018
[18] Kelley J.L.: General Topology. Springer, Berlin, 1955. MR 0370454 | Zbl 0518.54001
[19] Pultr A., Tozzi A.: Equationally closed subframes and representation of quotient spaces. Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 167–183. MR 1239466 | Zbl 0789.54008
[20] Simon P.: On accumulation points. Cahiers Topologie Géom. Différentielle Catég. 35 (1994), no. 4, 321–327. MR 1307264 | Zbl 0858.54008
[21] Tkachuk V.V., Yaschenko I.V.: Almost closed sets and topologies they determine. Comment. Math. Univ. Carolin. 42 (2001), no. 2, 395–405. MR 1832158 | Zbl 1053.54004
[22] Whyburn G.T.: Accessibility spaces. Proc. Amer. Math. Soc. 24 (1970), no. 1, 181–185. DOI 10.1090/S0002-9939-1970-0248722-0 | MR 0248722 | Zbl 0197.48602
[23] Wilansky A.: Between $T_1$ and $T_2$. Amer. Math. Monthly 74 (1967), no. 3, 261–266. MR 0208557
Partner of
EuDML logo