[3] Foulis, D. J., Bennett, M. K.:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346.
MR 1304942
[5] Gudder, S. P.:
Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30.
MR 1655076 |
Zbl 0939.03073
[7] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[8] Kalina, M.:
On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 609–620.
MR 2722091 |
Zbl 1214.06002
[9] Kalina, M., Olejček, V., Paseka, J., Riečanová, Z.: Sharply dominating $MV$-effect algebras. To appear in: Internat. J. Theoret. Phys. DOI: 10.1007/s10773-010-0338-x.
[10] Kalmbach, G.: Orthomodular Lattices. Kluwer Academic Publ. Dordrecht 1998.
[12] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/s, 3–6.
[14] Paseka, J., Riečanová, Z.: The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states. To appear in: Soft Comput. DOI: 10.1007/s00500-010-0561-7.
[15] Riečanová, Z.:
Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158.
MR 1725293
[17] Riečanová, Z.:
Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38 (1999), 3209–3220.
DOI 10.1023/A:1026682215765 |
MR 1764459
[18] Riečanová, Z.:
Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452.
MR 1791464
[19] Riečanová, Z.:
Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. Jour. Theoret. Phys. 39 (2000), 231–237.
DOI 10.1023/A:1003619806024 |
MR 1762594
[20] Riečanová, Z.:
Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532.
MR 1853730 |
Zbl 0989.03071
[22] Riečanová, Z.:
Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259.
MR 1984337 |
Zbl 1039.03050
[25] Riečanová, Z.:
Archimedean atomic lattice effect algebras with complete lattice of sharp elements. SIGMA 6 (2010), 001, 8 pages.
MR 2593381 |
Zbl 1189.03073
[26] Schmidt, J.:
Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Arch. d. Math. 7 (1956), 241–249.
DOI 10.1007/BF01900297 |
MR 0084484