Previous |  Up |  Next

Article

Keywords:
non-classical logics; orthomodular lattices; effect algebras; $MV$-algebras; MacNeille completions
Summary:
An effect algebraic partial binary operation $øplus$ defined on the underlying set $E$ uniquely introduces partial order, but not conversely. We show that if on a MacNeille completion $\widehat{E}$ of $E$ there exists an effect algebraic partial binary operation $\widehat{\oplus}$ then $\widehat{\oplus}$ need not be an extension of ${\oplus}$. Moreover, for an Archimedean atomic lattice effect algebra $E$ we give a necessary and sufficient condition for that $\widehat{\oplus}$ existing on $\widehat{E}$ is an extension of ${\oplus}$ defined on $E$. Further we show that such $\widehat{\oplus}$ extending ${\oplus}$ exists at most one.
References:
[1] Chang, C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958). 467–490. DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[2] Chovanec, F., Kôpka, F.: Difference posets in the quantum structures background. Internat. J. Theoret. Phys. 39 (2000), 571–583. DOI 10.1023/A:1003625401906 | MR 1790895
[3] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346. MR 1304942
[4] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra. Order 12 (1995), 91–106. DOI 10.1007/BF01108592 | MR 1336539
[5] Gudder, S. P.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15 (1998), 23–30. MR 1655076 | Zbl 0939.03073
[6] Gudder, S. P.: S-dominating effect algebras. Internat. J. Theoret. Phys. 37 (1998), 915–923. DOI 10.1023/A:1026637001130 | MR 1624277 | Zbl 0932.03072
[7] Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24–29.
[8] Kalina, M.: On central atoms of Archimedean atomic lattice effect algebras. Kybernetika 46 (2010), 609–620. MR 2722091 | Zbl 1214.06002
[9] Kalina, M., Olejček, V., Paseka, J., Riečanová, Z.: Sharply dominating $MV$-effect algebras. To appear in: Internat. J. Theoret. Phys. DOI: 10.1007/s10773-010-0338-x.
[10] Kalmbach, G.: Orthomodular Lattices. Kluwer Academic Publ. Dordrecht 1998.
[11] Kôpka, F.: Compatibility in D-posets. Internat. J. Theoret. Phys. 34 (1995), 1525–1531. DOI 10.1007/BF00676263 | MR 1353696
[12] Mosná, K.: Atomic lattice effect algebras and their sub-lattice effect algebras. J. Electr. Engrg. 58 (2007), 7/s, 3–6.
[13] Paseka, J., Riečanová, Z.: Isomorphism theorems on generalized effect algebras based on atoms. Inform. Sci. 179 (2009), 521–528. DOI 10.1016/j.ins.2008.08.016 | MR 2490192 | Zbl 1165.03053
[14] Paseka, J., Riečanová, Z.: The inheritance of BDE-property in sharply dominating lattice effect algebras and $(o)$-continuous states. To appear in: Soft Comput. DOI: 10.1007/s00500-010-0561-7.
[15] Riečanová, Z.: Compatibility and central elements in effect algebras. Tatra Mountains Math. Publ. 16 (1999), 151–158. MR 1725293
[16] Riečanová, Z.: MacNeille completions of D-posets and effect algebras. Internat. J. Theoret. Phys. 39 (2000), 859–869. DOI 10.1023/A:1003683014627 | MR 1792204
[17] Riečanová, Z.: Subalgebras, intervals and central elements of generalized effect algebras. Internat. J. Theoret. Phys. 38 (1999), 3209–3220. DOI 10.1023/A:1026682215765 | MR 1764459
[18] Riečanová, Z.: Archimedean and block-finite lattice effect algebras. Demonstratio Math. 33 (2000), 443–452. MR 1791464
[19] Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Internat. Jour. Theoret. Phys. 39 (2000), 231–237. DOI 10.1023/A:1003619806024 | MR 1762594
[20] Riečanová, Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 3, 525–532. MR 1853730 | Zbl 0989.03071
[21] Riečanová, Z.: Smearings of states defined on sharp elements onto effect algebras. Internat. J. Theoret. Phys. 41 (2002), 1511–1524. DOI 10.1023/A:1020136531601 | MR 1932844 | Zbl 1016.81005
[22] Riečanová, Z.: Distributive atomic effect algebras. Demonstratio Math. 36 (2003), 247–259. MR 1984337 | Zbl 1039.03050
[23] Riečanová, Z.: Subdirect decompositions of lattice effect algebras. Internat. J. Theoret. Phys. 42 (2003), 1415–1423. DOI 10.1023/A:1025775827938 | MR 2021221 | Zbl 1034.81003
[24] Riečanová, Z.: Pseudocomplemented lattice effect algebras and existence of states. Inform. Sci. 179 (2009) 529–534. DOI 10.1016/j.ins.2008.07.019 | MR 2490193 | Zbl 1166.03038
[25] Riečanová, Z.: Archimedean atomic lattice effect algebras with complete lattice of sharp elements. SIGMA 6 (2010), 001, 8 pages. MR 2593381 | Zbl 1189.03073
[26] Schmidt, J.: Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer Geordneten Menge. Arch. d. Math. 7 (1956), 241–249. DOI 10.1007/BF01900297 | MR 0084484
Partner of
EuDML logo