Previous |  Up |  Next

Article

Keywords:
numeration systems; negative base; Pisot number
Summary:
We consider positional numeration system with negative base $-\beta$, as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when $\beta$ is a quadratic Pisot number. We study a class of roots $\beta>1$ of polynomials $x^2-mx-n$, $m\geq n\geq 1$, and show that in this case the set ${\rm Fin}(-\beta)$ of finite $(-\beta)$-expansions is closed under addition, although it is not closed under subtraction. A particular example is $\beta=\tau=\frac12(1+\sqrt5)$, the golden ratio. For such $\beta$, we determine the exact bound on the number of fractional digits appearing in arithmetical operations. We also show that the set of $(-\tau)$-integers coincides on the positive half-line with the set of $(\tau^2)$-integers.
References:
[1] Ambrož, P., Dombek, D., Masáková, Z., Pelantová, E.: Numbers with integer expansion in the numeration system with negative base. Preprint 2009. MR 3051451
[2] Balková, L., Gazeau, J.-P., Pelantová, E.: Asymptotic behavior of beta-integers. Lett. Math. Phys. 84 (2008), 179–198. DOI 10.1007/s11005-008-0241-z | MR 2415548 | Zbl 1185.11063
[3] Bassino, F.: $\beta $-expansions for cubic Pisot numbers. In: 5th Latin American Theoretical Informatics Symposium (LATIN’02), Cancun 2002, Springer-Verlag, Lecture Notes in Comp. Sci. 2286 (2002), pp. 141–152. MR 1966122 | Zbl 1152.11342
[4] Bernat, J.: Arithmetics in $\beta $-numeration. Discr. Math. Theor. Comp. Sci. 9 (2007), 85–106. MR 2318443 | Zbl 1152.68456
[5] Burdík, Č., Frougny, Ch., Gazeau, J.-P., Krejcar, R.: Beta-integers as natural counting systems for quasicrystals. J. Phys. A: Math. Gen. 31 (1998), 6449–6472. DOI 10.1088/0305-4470/31/30/011 | MR 1644115
[6] Fabre, S.: Substitutions et $\beta $-systèmes de numération. Theoret. Comput. Sci. 137 (1995), 219–236. DOI 10.1016/0304-3975(95)91132-A | MR 1311222 | Zbl 0872.11017
[7] Frougny, Ch.: On-line addition in real base. In: Proc. MFCS 1999, Lectures Notes in Comput. Sci. 1672 (1999), pp. 1–11. MR 1731220 | Zbl 0955.68130
[8] Frougny, Ch., Lai, A. C.: On negative bases. In: Proc. DLT 09, Lectures Notes in Comput. Sci. 5583 (2009), 252–263. MR 2544706 | Zbl 1247.68139
[9] Frougny, Ch., Solomyak, B.: Finite $\beta $-expansions. Ergodic Theory Dynamical Systems 12 (1994), 713–723. MR 1200339
[10] Frougny, Ch., Surarerks, A.: On-line multiplication in real and complex base. In: Proc. IEEE Arith. 16, IEEE Computer Society Press 2003, pp. 212–219.
[11] Guimond, L. S., Masáková, Z., Pelantová, E.: Arithmetics of beta-expansions. Acta Arith. 112 (2004), 23–40. DOI 10.4064/aa112-1-2 | Zbl 1060.11065
[12] Ito, S., Sadahiro, T.: $(-\beta )$-expansions of real numbers. Integers 9 (2009), 239–259. MR 2534912
[13] Kalle, C., Steiner, W.: Beta-expansions, natural extensions and multiple tilings associated with Pisot units. To appear in Trans. Amer. Math. Soc. 2011. MR 2888207
[14] Masáková, Z., Pelantová, E., Vávra, T.: Arithmetics in number systems with a negative base. Theor. Comp. Sci. 12 (2011), 835–845. DOI 10.1016/j.tcs.2010.11.033 | Zbl 1226.11015
[15] Mazenc, C.: On the Redundancy of Real Number Representation Systems. Research Report 93-16, Laboratoire de l’informatique du parallélisme.
[16] Parry, W.: On the $\beta $-expansions of real numbers. Acta Math. Acad. Sci. Hung. 11 (1960), 401–416. DOI 10.1007/BF02020954 | MR 0142719 | Zbl 0099.28103
[17] Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477–493. DOI 10.1007/BF02020331 | MR 0097374
[18] Schmidt, K.: On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269–278. DOI 10.1112/blms/12.4.269 | MR 0576976 | Zbl 0494.10040
[19] Steiner, W.: On the structure of $(-\beta )$-integers. Preprint 2010. MR 2904969
[20] Thurston, W. P.: Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes, American Mathematical Society, Boulder 1989.
Partner of
EuDML logo