Previous |  Up |  Next

Article

Keywords:
compound Poisson-gamma; estimation; expansions; moments
Summary:
The compound Poisson-gamma variable is the sum of a random sample from a gamma distribution with sample size an independent Poisson random variable. It has received wide ranging applications. In this note, we give an account of its mathematical properties including estimation procedures by the methods of moments and maximum likelihood. Most of the properties given are hitherto unknown.
References:
[1] Buishand, T. A.: Stochastic Modelling of Daily Rainfall Sequences. Wageningen, Netherlands, Mededelingen Landbouwhogeschool 1977.
[2] Choo, L., Walker, S. G.: A new approach to investigating spatial variations of disease. J. Roy. Statist. Soc. A 171 (2008), 395–405. DOI 10.1111/j.1467-985X.2007.00503.x | MR 2427340
[3] Christensen, A., Melgaard, H., Iwersen, J.: Environmental monitoring based on a hierarchical Poisson-gamma model. J. Quality Technology 35 (2003), 275–285.
[4] Comtet, L.: Advanced Combinatorics. Reidel Publishing Company, Dordrecht 1974. MR 0460128 | Zbl 0283.05001
[5] Fisher, R. A., Cornish, E. A.: The percentile points of distributions having known cumulants. Technometrics 2 (1960), 209–225. DOI 10.1080/00401706.1960.10489895 | Zbl 0095.13704
[6] Fukasawa, T., Basawa, I. V.: Estimation for a class of generalized state-space time series models. Statist. Probab. Lett. 60 (2002), 459–473. DOI 10.1016/S0167-7152(02)00325-5 | MR 1947185 | Zbl 1056.62098
[7] Galue, L.: A generalized hyper Poisson-gamma distribution associated with the $H$-function. Hadronic J. 30 (2007), 63–79. MR 2356751 | Zbl 1137.62004
[8] Gradshteyn, I. S., Ryzhik, I. M.: Tables of Integrals, Series and Products. Fourth edition. Academic Press, New York 1965.
[9] Hadjicostas, P., Berry, S. M.: Improper and proper posteriors with improper priors in a Poisson-gamma hierarchical model. Test 8 (1999), 147–166. DOI 10.1007/BF02595867 | MR 1707655 | Zbl 0945.62032
[10] Henderson, R., Shimakura, S.: A serially correlated gamma frailty model for longitudinal count data. Biometrika 90 (2003), 355–366. DOI 10.1093/biomet/90.2.355 | MR 1986652 | Zbl 1034.62115
[11] Kendall, M., Stuart, A.: The Advanced Theory of Statistics. Volume 1. MacMillan, New York 1977. MR 0467977 | Zbl 0353.62013
[12] Cam, L. Le: A stochastic description of precipitation. In: Proc. Fourth Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), University of California Press, Berkeley 1961, volume 3, pp. 165–186. MR 0135598 | Zbl 0122.37005
[13] Nahmias, S., Demmy, W. S.: The logarithmic Poisson gamma-distribution – a model for leadtime demand. Naval Research Logistics 29 (1982), 667–677. DOI 10.1002/nav.3800290413 | Zbl 0538.90022
[14] Ozturk, A.: On the study of a probability distribution for precipitation totals. J. Appl. Meteorology 20 (1981), 1499–1505. DOI 10.1175/1520-0450(1981)020<1499:OTSOAP>2.0.CO;2
[15] Revfeim, K. J. A.: Comments “On the study of a probability distribution for precipitation totals”. J. Appl. Meteology 21 (1982), 97–100.
[16] Revfeim, K. J. A.: A theoretically derived distribution for annual rainfall totals. Internat. J. Climatology 10 (1990), 647–650. DOI 10.1002/joc.3370100607
[17] Withers, C. S.: Asymptotic expansions for distributions and quantiles with power series cumulants. J. Roy. Statist. Soc. B 46 (1984), 389–396. MR 0790623 | Zbl 0586.62026
[18] Withers, C. S., Nadarajah, S.: Saddlepoint Expansions in Terms of Bell Polynomials. Technical Report, Applied Mathematics Group, Industrial Research Ltd., Lower Hutt, New Zealand 2010. Avaiable on-line at http://arxiv.org/
[19] Xia, N., Zhang, Z.-Z., Ying, Z.-L.: Convergence rate of the L-N estimator in Poisson-gamma models. Acta Math. Appl. Sinica 22 (2006), 639–654. DOI 10.1007/s10255-006-0338-z | MR 2248528 | Zbl 1104.62082
Partner of
EuDML logo