[1] Benvenuti, P., Mesiar, R., Vivona, D.:
Monotone set functions-based integrals. In: Handbook of Measure Theory (E. Pap, ed.), Vol. II, Elsevier Science 2002, pp. 1329–1379.
MR 1954643 |
Zbl 1099.28007
[2] Denneberg, D.:
Non–Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht 1994.
MR 1320048 |
Zbl 0826.28002
[3] Choquet, G.:
Theory of capacities. Ann. Inst. Fourier 5 (1953-54), 131–295.
MR 0080760
[5] Klement, E. P., Mesiar, R., Pap, E.:
A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Systems 18 (2010), 178–187.
DOI 10.1109/TFUZZ.2009.2039367
[6] Mesiar, R., Ouyang, Y.:
General Chebyshev type inequalities for Sugeno. Fuzzy Sets and Systems 160 (2009), 58–64.
MR 2469431 |
Zbl 1183.28035
[7] Narukawa, Y.: Distances defined by Choquet integral. In: Proc. IEEE Internat. Conference on Fuzzy Systems, London 2007, CD–ROM [#1159].
[14] Sugeno, M., Narukawa, Y., Murofushi, T.:
Choquet integral and fuzzy measures on locally compact space. Fuzzy Sets and Systems 99, (1998), 2, 205–211.
MR 1646177 |
Zbl 0977.28012
[15] Wang, R.-S.: Some inequalities and convergence theorems for Choquet integral. J. Appl. Math. Comput., DOI 10.1007/212190/009/0358-y.