Previous |  Up |  Next

Article

Keywords:
local spectrum; local spectral radius; linear preservers
Summary:
Let ${\mathcal L}({\mathcal H})$ be the algebra of all bounded linear operators on a complex Hilbert space ${\mathcal H}$. We characterize locally spectrally bounded linear maps from ${\mathcal L}({\mathcal H})$ onto itself. As a consequence, we describe linear maps from ${\mathcal L}({\mathcal H})$ onto itself that compress the local spectrum.
References:
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers (2004). MR 2070395 | Zbl 1077.47001
[2] Akbari, S., Aryapoor, M.: On linear transformations preserving at least one eigenvalue. Proc. Amer. Math. Soc. 132 (2004), 1621-1625. DOI 10.1090/S0002-9939-03-07262-9 | MR 2051122 | Zbl 1041.15001
[3] Bendaoud, M., Bourhim, A.: Essentially spectrally bounded linear maps. Proc. Amer. Math. Soc. 92 (2009), 257-265. MR 2496677 | Zbl 1177.47048
[4] Bendaoud, M., Sarih, M.: Linear maps preserving the local spectral radius, preprint.
[5] Torgašev, A.: On operators with the same local spectra. Czech. Math. J. 48 (1998), 77-83. DOI 10.1023/A:1022467611697 | MR 1614080
[6] Bourhim, A., Miller, V. G.: Linear maps on $M_n(\mathbb{C})$ preserving the local spectral radius. Studia Math. 188 (2008), 67-75. DOI 10.4064/sm188-1-4 | MR 2430550
[7] Bračič, J., Müller, V.: Local spectrum and local spectral radius at a fixed vector. Studia Math. 194 (2009), 155-162. MR 2534182
[8] Chernoff, P. R.: Representations, automorphisms, and derivations of some operator algebras. J. Funct. Anal. 12 (1973), 257-289. DOI 10.1016/0022-1236(73)90080-3 | MR 0350442 | Zbl 0252.46086
[9] González, M., Mbekhta, M.: Linear maps on $M_{n}(\mathbb C)$ preserving the local spectrum. Linear Algebra Appl. 427 (2007), 176-182. MR 2351350 | Zbl 1127.15005
[10] Herstein, I. N.: Jordan homomorphisms. Trans. Amer. Math. Soc. 81 (1956), 331-341. DOI 10.1090/S0002-9947-1956-0076751-6 | MR 0076751 | Zbl 0073.02202
[11] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory. Oxford University Press, New York (2000). MR 1747914 | Zbl 0957.47004
[12] Richart, C. E.: General Theory of Banach Algebras. Van Nostrand, Princeton (1960). MR 0115101
[13] Šemrl, P.: Spectrally bounded linear maps on $B(H)$. Quart. J. Math. Oxford 49 (1998), 87-92. DOI 10.1093/qmathj/49.1.87 | MR 1617339
Partner of
EuDML logo