Previous |  Up |  Next

Article

Keywords:
fuzzy normed space; strictly convex fuzzy normed space; fixed point; fuzzy nonexpansive mapping; fuzzy best approximation; fuzzy Banach mapping
Summary:
We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all {$t$-best} approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric space is proved. Our results extend, generalize and unify various known results in the existing literature.
References:
[1] Bag, T., Samanta, S. K.: Fixed point theorems on fuzzy normed spaces. Inf. Sci. 176 (2006), 2910-2931. DOI 10.1016/j.ins.2005.07.013 | MR 2249178
[2] Bag, T., Samanta, S. K.: Fixed point theorems in Felbin's type fuzzy normed spaces. J. Fuzzy Math. 16 (2008), 243-260. MR 2388141
[3] Beg, I., Abbas, M.: Common fixed points of Banach operator pair on fuzzy normed spaces. Fixed Point Theory (to appear). MR 2463941
[4] Beg, I., Sedghi, S., Shobe, N.: Common fixed point of uniformly $R$-subweakly commuting mappings in fuzzy Banach spaces. J. Fuzzy Math. 18 (2010), 75-84. MR 2647702 | Zbl 1204.47098
[5] Deng, Z. K.: Fuzzy pseudo-metric spaces. J. Math. Anal. Appl. 86 (1982), 74-95. DOI 10.1016/0022-247X(82)90255-4 | Zbl 0501.54003
[6] W. G. Dotson, Jr.: On fixed points of nonexpansive mappings in nonconvex sets. Proc. Amer. Math. Soc. 38 (1973), 155-156. DOI 10.1090/S0002-9939-1973-0313894-9 | MR 0313894 | Zbl 0274.47029
[7] Naschie, M. S. El: On a class of fuzzy Khaler-like manifolds. Chaos Solitons Fractals 26 (2005), 257-261. DOI 10.1016/j.chaos.2004.12.024
[8] George, A., Veeramani, P.: On some results in fuzzy metric space. Fuzzy Sets Syst. 64 (1994), 395-399. MR 1289545
[9] George, A., Veeramani, P.: On some results of analysis for fuzzy metric space. Fuzzy Sets Syst. 90 (1997), 365-368. MR 1477836
[10] Kramosil, I., Michalek, J.: Fuzzy metrics and statistical metric spaces. Kybernetika, Praha 11 (1975), 336-344. MR 0410633 | Zbl 0319.54002
[11] Kaleva, O., Seikkala, S.: On fuzzy metric spaces. Fuzzy Sets Syst. 12 (1984), 215-229. MR 0740095 | Zbl 0558.54003
[12] Narang, T. D., Chandok, S.: Fixed points and best approximation in metric spaces. Indian J. Math., Pramila Srivastava memorial 51 (2009), 293-303. MR 2537948 | Zbl 1180.41024
[13] Sharma, S.: Common fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 127 (2002), 345-352. MR 1899067 | Zbl 0990.54029
[14] Vaezpour, S. M., Karimi, F.: $t$-best approximation in fuzzy normed spaces. Iran. J. Fuzzy Syst. 5 (2008), 93-99. MR 2432015 | Zbl 1171.46051
[15] Veeramani, P.: On some fixed point theorems on uniformly convex Banach spaces. J. Math. Anal. Appl. 167 (1992), 160-166. DOI 10.1016/0022-247X(92)90243-7 | MR 1165265 | Zbl 0780.47047
[16] Veeramani, P.: Best approximation in fuzzy metric spaces. J. Fuzzy Math. 9 (2001), 75-80. MR 1822315 | Zbl 0986.54006
[17] Zadeh, L. A.: Fuzzy sets. Inform. Acad Control 8 (1965), 338-353. DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo