[1] Apostol, T. M.:
Calculus. Vol. II: Multi-variable calculus and linear algebra, with applications to differential equations and probability. 2nd ed. Blaisdell Publishing Company Waltham (1969).
MR 0248290 |
Zbl 0185.11402
[2] Bailey, C., Chow, P., Cross, M., Freyer, Y., Pericleous, K.: Multiphysics modelling of the metals casting process. Proc. R. Soc. Lond. A. 452 (1996), 459-486.
[3] Baldoni, F.:
Thermomechanics of Solidification. Pittsburgh University Press Pittsburgh (1997).
Zbl 0945.74521
[4] Bansch, E., Smith, A.:
Simulation of dendritic crystal growth in thermal convection. Interfaces and Free Boundaries 2 (2000), 95-115.
DOI 10.4171/IFB/14 |
MR 1759501
[5] O. Bertrand, B. Binet, H. Combeau, S. Couturier, Y. Delannoy, D. Gobin, M. Lacroix, P. Le Quere, M. Medale, J. Mercinger, H. Sadat, G. Vieira:
Melting driven by natural convection. A comparison exercise: first results. Int. J. Therm. Sci. 38 (1999), 5-26.
DOI 10.1016/S0035-3159(99)80013-0
[6] Brent, A. D., Volle, V. R., Reid, K. J.:
Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer. Heat Transfer 13 (1988), 297-318.
DOI 10.1080/10407788808913615
[7] Cerimele, M. M., Mansutti, D., Pistella, F.: A front-fixing method for flows in liquid/solid phase change with a benchmark test. CD-Rom Proceedings of ECCOMAS 2000, Barcelona, September 11-14, 2000.
[8] Chalmers, B.: Principles of Solidification. J. Wiley & Sons New York (1964).
[9] Chen, P. Y. P., Timchenko, V., Leonardi, E., Davis, G. de Vahl, III, H. C. de Groh: A numerical study of directional solidification and melting in microgravity. Proceedings of the ASME, Heat Transfer Division Vol. 3 (1998), 75-83.
[10] Chiesa, F. M., Guthie, R. I. L.: Natural convection heat transfer rate during the solidification and melting of metals and alloy systems. J. Heat Transfer 99 (1977), 520-526.
[11] Costanza, G., Gauzzi, F., Montanari, R.:
Structures of solid and liquid during melting and solidification of indium. Ann. New York Acad. Sci. 974 (2002), 68-78.
DOI 10.1111/j.1749-6632.2002.tb05897.x
[12] Crank, J.:
Free and Moving Boundary Problems. Oxford Science Publication. Clarendon Press Oxford (1984).
MR 0776227
[13] Cross, M., Bailey, C., Pericleous, K., Williams, A., Bojarevics, V., Croft, N., Taylor, G.: The multiphysics modeling of solidification and melting processes. JOM-e 54 (2002).
[15] Fabritiis, G. De, Mancini, A., Mansutti, D., Succi, S.:
Mesoscopic models of liquid/solid phase transitions. Int. J. Modern Physics C. 9 (1998), 1405-1415.
DOI 10.1142/S0129183198001278
[16] III, H. C. de Groh, Lindstrom, T.: Interface shape and convection during solidification and melting of succinonitrile. NASA Technical Memorandum 106487 (1994).
[18] Davis, G. De Vahl, Hanjalic, K., Quere, P. Le, Bontoux, P.: Progress in Computational Heat and Mass Transfer. Proc 4th Int. Conf. Comput. Heat Mass Transfer, May 17-20, 2005, Paris. Lavoisier Paris (2005).
[19] Drazin, P. G., Reid, W. H.: Hydrodynamic Stability. Cambridge University Press Cambridge (1985).
[21] Gadkari, D. B., Shashidharan, P., Lal, K. B., Arora, B. M.:
Influence of crystal-melt interface shape on self-seeding and single crystalline quality. Bull. Mater. Sci. 24 (2001), 475-482.
DOI 10.1007/BF02706718
[22] Gau, C., Viskanta, R.:
Melting and solidification of a metal system in a rectangular cavity. Int. J. Heat Mass Transfer 27 (1984), 113-123.
DOI 10.1016/0017-9310(84)90243-6
[23] Gau, C., Viskanta, R.:
Melting and solidification of a pure metal on a vertical wall. Transaction of the ASME 108 (1986), 174-181.
DOI 10.1115/1.3246884
[24] Golub, G., Loan, C. van:
Matrix Computations. The Johns Hopkins University Press Baltimore (1989).
MR 1002570
[25] Gondi, P., Montanari, R., Evangelista, E., Buroni, G.: X-ray study of structures of liquid metals with controlled convective motions. Microgravity Quarterly 7 (1997), 155-173.
[26] Hannoun, N., Alexiades, V., Mai, T. Z.: Resolving the controversy over tin and gallium melting in a rectangular cavity heated from the side. Numerical Heat Transfer, Part B 44 (2003), 253-276.
[29] Hirasaki, G. J., Hellums, J. D.:
Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics. Q. Appl. Math. 28 (1970), 293-296.
DOI 10.1090/qam/99793 |
Zbl 0229.76031
[34] Kang, K., Ryou, H.:
Computation of solidification and melting using the PISO algorithm. Numer. Heat Transfer, Part B 46 (2004), 179-194.
DOI 10.1080/10407790490438563
[35] Kim, S., Anghaie, S., Chen, G.:
Numerical prediction of multicellular melt flow during natural convection-dominated melting. J. Thermophysics and Heat Transfer 17 (2003), 62-68.
DOI 10.2514/2.6734
[36] Kumar, V., Durst, F., Ray, S.:
Modeling moving-boundary problems of solidification and melting adopting an arbitrary Lagragian-Eulerian approach. Numer. Heat Transfer, Part B 49 (2006), 299-331.
DOI 10.1080/10407790500379981
[37] Lamazouade, A., Ganaoui, M. El, Morvan, D., Bontoux, P.:
Numerical simulation of thermo-solutal convection during Bridgman crystal growth. Revue Generale de Thermique 38 (1999), 674-683.
DOI 10.1016/S0035-3159(99)80085-3
[39] Quere, P. Le, Gobin, D.:
A note on possible flow instabilities in melting from the side. Int. J. Thermal Sci. 38 (1999), 595-600.
DOI 10.1016/S0035-3159(99)80039-7
[41] Mansutti, D., Baldoni, F., Rajagopal, K. R.:
On the influence of the deformation of the forming solid in the solidification of a semi-infinte water-layer of fluid. Math. Models Methods Appl. Sci. 11 (2001), 367-386.
DOI 10.1142/S0218202501000891 |
MR 1820678
[42] Mansutti, D., Raffo, R., Santi, R.:
Liquid/Solid phase change with convection and deformations: 2D case. Progress in Industrial Mathematics at ECMI Mathematics in Industry Vol. 8, 2004 A. Di Bucchianico, R. M. M. Mattheij, M. A. Peletier Springer Berlin (2006), 268-272.
MR 2228611 |
Zbl 1309.80003
[43] Miller, W., Succi, S., Mansutti, D.:
A lattice Boltzmann model for anisotropic liquid/solid phase transition. Phys. Rev. Lett. 86 (2001), 3578-3581.
DOI 10.1103/PhysRevLett.86.3578
[44] Rady, M. A., Mohanty, A. K.:
Natural convection during melting and solidification of pure metals in a cavity. Numer. Heat Transfer, Part A 29 (1996), 49-63.
DOI 10.1080/10407789608913778
[46] Slattery, J. C.: Momentum, Energy and Mass Transfer in Continua. McGraw-Hill New York (1972).
[47] Song, R., Dhatt, G., Cheikh, A. Ben:
Thermo-mechanical finite element model of casting systems. Int. J. Numer. Methods Eng. 30 (1990), 579-599.
DOI 10.1002/nme.1620300403
[48] Stella, F., Giangi, M.:
Melting of a pure metal on a vertical wall: numerical simulation. Numer. Heat Transfer, Part A 38 (2000), 193-208.
DOI 10.1080/10407780050135405
[49] Stefan, J.: Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Sitzungsberichte der "Osterreichischen Akademie der Wissenschaften Mathematisch-Naturwissen-schaftliche Klasse, Abteilung 2, Mathematik, Astronomie, Physik, Meteorologie und Technik 98 (1988), 965-983 German.
[50] Szekely, J., Chambra, P. S.:
The effect of natural convection on the shape and movement of the melt-solid interface in the controlled solidification. Met. Trans. B1 (1970), 1195-1203.
DOI 10.1007/BF02900231
[51] Tenchev, R. T., Mackenzie, J. A., Scanlon, T. J., Stickland, M. T.:
Finite element moving mesh analysis of phase change problems with natural convection. Int. J. Heat Fluid Flow 26 (2005), 597-612.
DOI 10.1016/j.ijheatfluidflow.2005.03.003
[52] Teskeredzic, A., Demirdzic, I., Muzaferija, S.:
Numerical method for heat transfer, fluid flow and stress analysis in phase-change problems. Numer. Heat Transfer, Part B 42 (2002), 437-459.
DOI 10.1080/10407790190054021
[53] Truesdell, C., Rajagopal, K. R.:
An Introduction to the Mechanics of Fluids. Birkhäuser Boston (2000).
MR 1731441 |
Zbl 0942.76001
[54] Vorst, H. Van der:
Bi-CGSTAB: A fast and smoothly converging variant of the Bi-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992), 631-644.
DOI 10.1137/0913035 |
MR 1149111
[55] Viswanath, R., Jaluria, Y.:
A comparison of different solution methodologies for melting and solidification problems in enclosures. Numer. Heat Transfer, Part B. 24 (1993), 77-105.
DOI 10.1080/10407799308955883
[57] Voller, V. R.: An overview of numerical methods for solving phase change problems: a review. Adv. Numer. Heat Transfer W. J. Minkowycz, E. M. Sparrow Taylor & Francis Philadelphia (1997).
[58] Yeoh, G. H., Davis, G. de Vahl, Leonardi, E., III, H. C. de Groh, Yao, M.:
A numerical and experimental study of natural convection and interface shape in crystal growth. J. Crystal Growth 173 (1997), 492-502.
DOI 10.1016/S0022-0248(96)00851-2