[1] Adams, R. A., Fournier, J. F.:
Sobolev Spaces. Second edition. Academic Press, New York 2003.
MR 2424078 |
Zbl 1098.46001
[2] Anita, S., Barbu, V.:
Null controllability of nonlinear convective heat equation. ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173.
DOI 10.1051/cocv:2000105 |
MR 1744610
[5] Barbu, V.:
Controllability of parabolic and Navier–Stokes equations. Sci. Math. Japon. 56 (2002), 143–211.
MR 1911840 |
Zbl 1010.93054
[6] Barbu, V., Iannelli, M.:
Controllability of the heat equation with memory. Differential and Integral Equations 13 (2000), 1393–1412.
MR 1787073 |
Zbl 0990.93008
[7] Bardos, C., Lebeau, G., Rauch, J.:
Controle et stabilisation de l’equation des ondes. SIAM J. Control Optim. 30 (1992), 1024–1065.
MR 1178650
[9] Chae, D., Imanuvilov, O. Yu., Kim, S. M.:
Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynamical and Control Systems 2 (1996), 449–483.
DOI 10.1007/BF02254698 |
MR 1420354 |
Zbl 0946.93007
[10] Fattorini, H. O., Sritharan, S. S.:
Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. Royal Soc. London A 124 (1994), 211–251.
MR 1273746 |
Zbl 0800.49047
[12] Fernández-Cara, E., Zuazua, E.:
The cost of approximate controllability for heat equations: The linear case. Adv. in Differential Equations 5 (2000), 465–514.
MR 1750109
[13] Fernández-Cara, E., Zuazua, E.:
Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 583–616.
DOI 10.1016/S0294-1449(00)00117-7 |
MR 1791879
[14] Fursikov, A. V., Imanuvilov, O. Yu.:
Controllability of Evolution Equations. Lecture Notes Ser., Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996.
MR 1406566 |
Zbl 0862.49004
[15] Imanuvilov, O. Yu., Yamamoto, M.:
Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publications of RIMS, Kyoto University 39 (2003), 227–274.
DOI 10.2977/prims/1145476103 |
MR 1987865 |
Zbl 1065.35079
[16] Komorník, V.:
Exact Controllability and Stabilization: The Multiplier Method. John Wiley, Paris 1995.
MR 1359765
[17] Ladyzenskaya, O. A., Solonikov, V. A., Uralceva, N.: Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monographs, Providence 1968.
[19] Lions, J. L.: Controlabilité exacte, stabilisation et perturbations the systémes distribués. Tome 1 and Tome 2. Masson 1988.
[23] Sakthivel, K., Balachandran, K., Sritharan, S. S.:
Exact controllability of nonlinear diffusion equations arising in reactor dynamics. Nonlinear Anal.: Real World Appl. 9 (2008) 2029–2054.
MR 2441765 |
Zbl 1156.93321
[24] Sakthivel, K., Balachandran, K., Nagaraj, B. R.:
On a class of nonlinear parabolic control systems with memory effects. Internat. J. Control 81 (2008), 764–777.
DOI 10.1080/00207170701447114 |
MR 2406883
[25] Simon, J.:
Compact sets in the space $L^p(0;T;B)$. Ann. Mat. Pura Appl. 146 (1986), 65–96.
MR 0916688
[26] Tataru, D.:
Boundary controllability for conservative partial differential equations. Appl. Math. Optim. 31 (1995), 257–295.
DOI 10.1007/BF01215993 |
MR 1316260
[28] Yong, J., Zhang, X.:
Exact controllability of the heat equation with hyperbolic memory kernel. Control Theory of Partial Differential Equations. Chapman & Hall/CRC, Boca Raton 2005, pp. 387–401.
MR 2149174 |
Zbl 1085.35038
[29] Zuazua, E.:
Controllability and observability of partial differential equations: some results and open problem. In: Handbook of Differential Equations: Evolutionary Equations 3 (2007), 527–621.
DOI 10.1016/S1874-5717(07)80010-7 |
MR 2549374