Previous |  Up |  Next

Article

Keywords:
controllability; observability; parabolic integrodifferential equation
Summary:
In this paper, we prove the exact null controllability of certain diffusion system by rewriting it as an equivalent nonlinear parabolic integrodifferential equation with variable coefficients in a bounded interval of $\mathbb R$ with a distributed control acting on a subinterval. We first prove a global null controllability result of an associated linearized integrodifferential equation by establishing a suitable observability estimate for adjoint system with appropriate assumptions on the coefficients. Then this result is successfully used with some estimates for parabolic equation in $L^k$ spaces together with classical fixed point theorem, to prove the null controllability of the nonlinear model.
References:
[1] Adams, R. A., Fournier, J. F.: Sobolev Spaces. Second edition. Academic Press, New York 2003. MR 2424078 | Zbl 1098.46001
[2] Anita, S., Barbu, V.: Null controllability of nonlinear convective heat equation. ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173. DOI 10.1051/cocv:2000105 | MR 1744610
[3] Balachandran, K., Dauer, J. P.: Controllability of nonlinear systems in Banach spaces; A survey. J. Optim. Theory Appl. 115 (2002), 7–28. DOI 10.1023/A:1019668728098 | MR 1937343 | Zbl 1023.93010
[4] Barbu, V.: Exact controllability of superlinear heat equation. Appl. Math. Optim. 42 (2000), 73–89. DOI 10.1007/s002450010004 | MR 1751309
[5] Barbu, V.: Controllability of parabolic and Navier–Stokes equations. Sci. Math. Japon. 56 (2002), 143–211. MR 1911840 | Zbl 1010.93054
[6] Barbu, V., Iannelli, M.: Controllability of the heat equation with memory. Differential and Integral Equations 13 (2000), 1393–1412. MR 1787073 | Zbl 0990.93008
[7] Bardos, C., Lebeau, G., Rauch, J.: Controle et stabilisation de l’equation des ondes. SIAM J. Control Optim. 30 (1992), 1024–1065. MR 1178650
[8] Beceanu, M.: Local exact controllability of the diffusion equation in one dimension. Abstract Appl. Anal. 14 (2003), 793–811. DOI 10.1155/S1085337503303033 | MR 2009498 | Zbl 1070.93025
[9] Chae, D., Imanuvilov, O. Yu., Kim, S. M.: Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynamical and Control Systems 2 (1996), 449–483. DOI 10.1007/BF02254698 | MR 1420354 | Zbl 0946.93007
[10] Fattorini, H. O., Sritharan, S. S.: Necessary and sufficient conditions for optimal controls in viscous flow problems. Proc. Royal Soc. London A 124 (1994), 211–251. MR 1273746 | Zbl 0800.49047
[11] Fernández-Cara, E., Guerrero, S.: Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006), 1395–1446. DOI 10.1137/S0363012904439696 | MR 2257228 | Zbl 1121.35017
[12] Fernández-Cara, E., Zuazua, E.: The cost of approximate controllability for heat equations: The linear case. Adv. in Differential Equations 5 (2000), 465–514. MR 1750109
[13] Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), 583–616. DOI 10.1016/S0294-1449(00)00117-7 | MR 1791879
[14] Fursikov, A. V., Imanuvilov, O. Yu.: Controllability of Evolution Equations. Lecture Notes Ser., Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996. MR 1406566 | Zbl 0862.49004
[15] Imanuvilov, O. Yu., Yamamoto, M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publications of RIMS, Kyoto University 39 (2003), 227–274. DOI 10.2977/prims/1145476103 | MR 1987865 | Zbl 1065.35079
[16] Komorník, V.: Exact Controllability and Stabilization: The Multiplier Method. John Wiley, Paris 1995. MR 1359765
[17] Ladyzenskaya, O. A., Solonikov, V. A., Uralceva, N.: Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monographs, Providence 1968.
[18] Lebeau, G., Robbiano, L.: Contròle exact de l’équation de la chaleur. Comm. Partial Differential Equations 20 (1995), 335–356. DOI 10.1080/03605309508821097 | MR 1312710 | Zbl 0884.35049
[19] Lions, J. L.: Controlabilité exacte, stabilisation et perturbations the systémes distribués. Tome 1 and Tome 2. Masson 1988.
[20] Pachpatte, B. G.: On a nonlinear diffusion system arising in reactor dynamics. J. Math. Anal. Appl. 94 (1983), 501–508. DOI 10.1016/0022-247X(83)90078-1 | MR 0706380 | Zbl 0524.35055
[21] Pao, C. V.: Bifurcation analysis of a nonlinear diffusion system in reactor dynamics. Appl. Anal. 9 (1979), 107–119. DOI 10.1080/00036817908839258 | MR 0539536
[22] Sakthivel, K., Balachandran, K., Sritharan, S. S.: Controllability and observability theory of certain parabolic integrodifferential equations. Comp. and Math. Appl. 52 (2006), 1299–1316. DOI 10.1016/j.camwa.2006.11.007 | MR 2307079 | Zbl 1119.93020
[23] Sakthivel, K., Balachandran, K., Sritharan, S. S.: Exact controllability of nonlinear diffusion equations arising in reactor dynamics. Nonlinear Anal.: Real World Appl. 9 (2008) 2029–2054. MR 2441765 | Zbl 1156.93321
[24] Sakthivel, K., Balachandran, K., Nagaraj, B. R.: On a class of nonlinear parabolic control systems with memory effects. Internat. J. Control 81 (2008), 764–777. DOI 10.1080/00207170701447114 | MR 2406883
[25] Simon, J.: Compact sets in the space $L^p(0;T;B)$. Ann. Mat. Pura Appl. 146 (1986), 65–96. MR 0916688
[26] Tataru, D.: Boundary controllability for conservative partial differential equations. Appl. Math. Optim. 31 (1995), 257–295. DOI 10.1007/BF01215993 | MR 1316260
[27] Yanik, E. G., Fairweather, G.: Finite element methods for parabolic and hyperbolic partial integrodifferential equation. Nonlinear Anal. 12 (1988), 785–809. DOI 10.1016/0362-546X(88)90039-9 | MR 0954953
[28] Yong, J., Zhang, X.: Exact controllability of the heat equation with hyperbolic memory kernel. Control Theory of Partial Differential Equations. Chapman & Hall/CRC, Boca Raton 2005, pp. 387–401. MR 2149174 | Zbl 1085.35038
[29] Zuazua, E.: Controllability and observability of partial differential equations: some results and open problem. In: Handbook of Differential Equations: Evolutionary Equations 3 (2007), 527–621. DOI 10.1016/S1874-5717(07)80010-7 | MR 2549374
Partner of
EuDML logo