[2] Bock, S., Gürlebeck, K.:
On an orthonormal basis of solid spherical monogenics recursively generated by anti–holomorphic $\bar{z}$–powers. Proc. of ICNAAM 2009, AIP Conference Proceedings (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1168, 2009, pp. 765–768.
Zbl 1191.30017
[3] Bock, S., Gürlebeck, K.:
On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33 (4) (2010), 394–411.
MR 2641616 |
Zbl 1195.30068
[4] Bock, S., Gürlebeck, K., Lávička, R., Souček, V.: Gelfand–Tsetlin bases for spherical monogenics in dimension 3. preprint.
[6] Brackx, F., Schepper, H. De, Lávička, R., Souček, V.: Gelfand–Tsetlin Bases of Orthogonal Polynomials in Hermitean Clifford Analysis. preprint.
[7] Brackx, F., Schepper, H. De, Lávička, R., Souček, V.: The Cauchy–Kovalevskaya Extension Theorem in Hermitean Clifford Analysis. preprint.
[8] Bröcker, T., tom Dieck, T.:
Representations of Compact Lie Groups. Springer, New York, 1985.
MR 0781344
[9] Cação, I.: Constructive approximation by monogenic polynomials. Ph.D. thesis, Univ. Aveiro, 2004.
[10] Cação, I., Malonek, H. R.: Remarks on some properties of monogenic polynomials. Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 596–599.
[11] Cação, I., Malonek, H. R.: On a complete set of hypercomplex Appell polynomials. Proc. of ICNAAM 2008 (Timos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1048, 2008, AIP Conference Proceedings, pp. 647–650.
[12] Delanghe, R.:
On homogeneous polynomial solutions of the Riesz system and their harmonic potentials. Complex Var. Elliptic Equ. 52 (10–11) (2007), 1047–1061.
MR 2374971 |
Zbl 1201.30063
[13] Delanghe, R., Lávička, R., Souček, V.: The Gelfand–Tsetlin bases for Hodge–de Rham systems in Euclidean spaces. preprint.
[14] Delanghe, R., Sommen, F., Souček, V.:
Clifford Algebra and Spinor–Valued Functions. Kluwer Academic Publishers, Dordrecht, 1992.
MR 1169463
[15] Falcão, M. I., Cruz, J. F., Malonek, H. R.: Remarks on the generation of monogenic functions. Proc. of IKM 2006 (Gürlebeck, K., Könke, C., eds.), Bauhaus–University Weimar, 2006, ISSN 1611–4086.
[16] Falcão, M. I., Malonek, H. R.: Generalized exponentials through Appell sets in $\mathbb{R}^{n+1}$ and Bessel functions. Proc. of ICNAAM 2007 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 936, 2007, AIP Conference Proceedings, pp. 750–753.
[17] Gilbert, J. E., Murray, M. A. M.:
Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, 1991.
MR 1130821 |
Zbl 0733.43001
[18] Gürlebeck, K., Morais, J.: On the development of Bohr’s phenomenon in the context of quaternionic analysis and related problems. arXiv:1004.1188v1 [math.CV], 2010.
[19] Gürlebeck, K., Morais, J.: Real–Part Estimates for Solutions of the Riesz System in $\mathbb{R}^3$. arXiv:1004.1191v1 [math.CV], 2010.
[20] Gürlebeck, K., Morais, J.: On monogenic primitives of Fueter polynomials. Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 600–605.
[22] Gürlebeck, K., Morais, J.:
Bohr type theorem for monogenic power series. Comput. Methods Funct. Theory 9 (2) (2009), 633–651.
DOI 10.1007/BF03321749 |
MR 2572660
[23] Sommen, F.:
Spingroups and spherical means III. Rend. Circ. Mat. Palermo (2) Suppl. 1 (1989), 295–323.
MR 1009582 |
Zbl 0709.35077
[26] Zeitlinger, P.: Beiträge zur Clifford Analysis und deren Modifikation. Ph.D. thesis, University Erlangen, 2005.