Previous |  Up |  Next

Article

Keywords:
spherical monogenics; orthogonal basis; Legendre polynomials; $\mathfrak{sl}(2,{\mathbb{C}})$-module
Summary:
Spaces of homogeneous spherical monogenics in dimension 3 can be considered naturally as ${\mathfrak{sl}}(2,{\mathbb{C}})$-modules. As finite-dimensional irreducible ${\mathfrak{sl}}(2,{\mathbb{C}})$-modules, they have canonical bases which are, by construction, orthogonal. In this note, we show that these orthogonal bases form the Appell system and coincide with those constructed recently by S. Bock and K. Gürlebeck in [3]. Moreover, we obtain simple expressions of elements of these bases in terms of the Legendre polynomials.
References:
[1] Bock, S.: Über funktionentheoretische Methoden in der räumlichen Elastizitätstheorie. Ph.D. thesis, University Weimar, 2010, German, http://e-pub.uni-weimar.de/frontdoor.php?source_opus=1503
[2] Bock, S., Gürlebeck, K.: On an orthonormal basis of solid spherical monogenics recursively generated by anti–holomorphic $\bar{z}$–powers. Proc. of ICNAAM 2009, AIP Conference Proceedings (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1168, 2009, pp. 765–768. Zbl 1191.30017
[3] Bock, S., Gürlebeck, K.: On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33 (4) (2010), 394–411. MR 2641616 | Zbl 1195.30068
[4] Bock, S., Gürlebeck, K., Lávička, R., Souček, V.: Gelfand–Tsetlin bases for spherical monogenics in dimension 3. preprint.
[5] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London, 1982. MR 0697564 | Zbl 0529.30001
[6] Brackx, F., Schepper, H. De, Lávička, R., Souček, V.: Gelfand–Tsetlin Bases of Orthogonal Polynomials in Hermitean Clifford Analysis. preprint.
[7] Brackx, F., Schepper, H. De, Lávička, R., Souček, V.: The Cauchy–Kovalevskaya Extension Theorem in Hermitean Clifford Analysis. preprint.
[8] Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer, New York, 1985. MR 0781344
[9] Cação, I.: Constructive approximation by monogenic polynomials. Ph.D. thesis, Univ. Aveiro, 2004.
[10] Cação, I., Malonek, H. R.: Remarks on some properties of monogenic polynomials. Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 596–599.
[11] Cação, I., Malonek, H. R.: On a complete set of hypercomplex Appell polynomials. Proc. of ICNAAM 2008 (Timos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 1048, 2008, AIP Conference Proceedings, pp. 647–650.
[12] Delanghe, R.: On homogeneous polynomial solutions of the Riesz system and their harmonic potentials. Complex Var. Elliptic Equ. 52 (10–11) (2007), 1047–1061. MR 2374971 | Zbl 1201.30063
[13] Delanghe, R., Lávička, R., Souček, V.: The Gelfand–Tsetlin bases for Hodge–de Rham systems in Euclidean spaces. preprint.
[14] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor–Valued Functions. Kluwer Academic Publishers, Dordrecht, 1992. MR 1169463
[15] Falcão, M. I., Cruz, J. F., Malonek, H. R.: Remarks on the generation of monogenic functions. Proc. of IKM 2006 (Gürlebeck, K., Könke, C., eds.), Bauhaus–University Weimar, 2006, ISSN 1611–4086.
[16] Falcão, M. I., Malonek, H. R.: Generalized exponentials through Appell sets in $\mathbb{R}^{n+1}$ and Bessel functions. Proc. of ICNAAM 2007 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), vol. 936, 2007, AIP Conference Proceedings, pp. 750–753.
[17] Gilbert, J. E., Murray, M. A. M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, 1991. MR 1130821 | Zbl 0733.43001
[18] Gürlebeck, K., Morais, J.: On the development of Bohr’s phenomenon in the context of quaternionic analysis and related problems. arXiv:1004.1188v1 [math.CV], 2010.
[19] Gürlebeck, K., Morais, J.: Real–Part Estimates for Solutions of the Riesz System in $\mathbb{R}^3$. arXiv:1004.1191v1 [math.CV], 2010.
[20] Gürlebeck, K., Morais, J.: On monogenic primitives of Fueter polynomials. Proc. of ICNAAM 2006 (Simos, T. E., Psihoyios, G., Tsitouras, Ch., eds.), Wiley–VCH, Weinheim, 2006, pp. 600–605.
[21] Gürlebeck, K., Morais, J.: On the calculation of monogenic primitives. Adv. Appl. Clifford Algebras 17 (3) (2007), 481–496. DOI 10.1007/s00006-007-0047-6 | MR 2350593 | Zbl 1208.30047
[22] Gürlebeck, K., Morais, J.: Bohr type theorem for monogenic power series. Comput. Methods Funct. Theory 9 (2) (2009), 633–651. DOI 10.1007/BF03321749 | MR 2572660
[23] Sommen, F.: Spingroups and spherical means III. Rend. Circ. Mat. Palermo (2) Suppl. 1 (1989), 295–323. MR 1009582 | Zbl 0709.35077
[24] Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–225. DOI 10.1017/S0305004100055638 | MR 0516081 | Zbl 0399.30038
[25] Van Lancker, P., : Spherical monogenics: An algebraic approach. Adv. Appl. Clifford Algebra 19 (2009), 467–496. DOI 10.1007/s00006-009-0168-1 | MR 2524683 | Zbl 1172.30030
[26] Zeitlinger, P.: Beiträge zur Clifford Analysis und deren Modifikation. Ph.D. thesis, University Erlangen, 2005.
Partner of
EuDML logo