[1] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.:
Fundaments of Hermitean Clifford analysis – Part I: Complex structure. Compl. Anal. Oper. Theory 1 (3) (2007), 341–365.
DOI 10.1007/s11785-007-0010-5 |
MR 2336028
[2] Brackx, F., Bureš, J., Schepper, H. De, Eelbode, D., Sommen, F., Souček, V.:
Fundaments of Hermitean Clifford analysis – Part II: Splitting of $h$–monogenic equations. Complex Var. Elliptic Equ. 52 (10–11) (2007), 1063–1079.
MR 2374972
[4] Brackx, F., Delanghe, R., Sommen, F.:
Differential forms and$/$or multi–vector functions. Cubo 7 (2) (2005), 139–169.
MR 2186030 |
Zbl 1105.58002
[11] Brackx, F., Schepper, H. De, Souček, V.: On the structure of complex Clifford algebra. accepted for publication in Adv. Appl. Clifford Algebras.
[12] Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C.:
Analysis of Dirac systems and computational algebra. Birkhäuser, Boston, 2004.
MR 2089988 |
Zbl 1064.30049
[14] Delanghe, R., Lávička, R., Souček, V.: The Fischer decomposition for Hodge–de Rham Systems in Euclidean space. to appear.
[15] Delanghe, R., Sommen, F., Souček, V.:
Clifford algebra and spinor–valued functions – A function theory for the Dirac operator. Kluwer Academic Publishers, Dordrecht, 1992.
MR 1169463
[19] Fischer, E.: Über die Differentiationsprozesse der Algebra. J. für Math. 148 (1917), 1–78.
[20] Gilbert, J., Murray, M.:
Clifford Algebra and Dirac Operators in Harmonic Analysis. Cambridge University Press, 1991.
MR 1130821
[21] Goodman, R., Wallach, N. R.:
Representations and Invariants of the Classical Groups. Cambridge University Press, 2003.
MR 1606831
[22] Gürlebeck, K., Sprössig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. J. Wiley & Sons, Chichester, 1997.
[23] Rocha–Chavez, R., Shapiro, M., Sommen, F.:
Integral theorems for functions and differential forms in ${\mathbb{C}}_m$. vol. 428, Research Notes in Math., 2002.
MR 1889406