Previous |  Up |  Next

Article

References:
[1] Alikakos, N. D., Bates, P. W.: On the singular limit in a phase field model of phase transitions. Analyse nonlinéaire, Ann. Inst. Henri Poincaré 5 (1988), 141–178. MR 0954469 | Zbl 0696.35060
[2] Barles, G., Diaz, G., Diaz, J. I.: Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a nonlipschitz nonlinearity. Comm PDE 17 (1992), 1037–1050. DOI 10.1080/03605309208820876 | MR 1177305
[3] Brèzis, H., Nirenberg, L.: Positive solutions of nonlinear equations involving critical Sobolev components. Commun. Pure Appl. Math. 36 (1983), 437–477. DOI 10.1002/cpa.3160360405 | MR 0709644
[4] Brock, F.: Continuous polarization and symmetry of solutions of variational problems with potentials. In: Calculus of Variations, Applications and Computations, Pont-à-Mousson 1994. Pitman Res. Notes in Math. 326 (1995), 25–35. MR 1419331 | Zbl 0840.49006
[5] Brock, F.: Continuous rearrangement and symmetry of solutions of elliptic problems. Proc. Indian. Acad. Sci. Math. Sci. 110 (2000), 157–204. DOI 10.1007/BF02829490 | MR 1758811 | Zbl 0965.49002
[6] Brock, F., Ferone, V., Kawohl, B.: A symmetry problem in the calculus of variations. Calculus of Variations and PDE 4 (1996), 593–599. DOI 10.1007/BF01261764 | MR 1416001 | Zbl 0856.49018
[7] Brock, F., Solynin, A.: An approach to symmetrization via polarization. Trans. Amer. Math. Soc. 352 (2000), 1759–1796. DOI 10.1090/S0002-9947-99-02558-1 | MR 1695019 | Zbl 0965.49001
[8] Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Mathematische Nachrichten 173 (1995), 71–89. DOI 10.1002/mana.19951730106 | MR 1336954 | Zbl 0835.49001
[9] Caffarelli, L., Garofalo, N., Segala, F.: A gradient bound for entire solutions of quasilinear equations and its consequences. Commun. Pure Appl. Math. 47 (1994), 1457–1473. DOI 10.1002/cpa.3160471103 | MR 1296785
[10] Coffmann, C. V.: A nonlinear boundary value problem with many positive solutions. J. Differ. Equations 54 (1984), 429–437. DOI 10.1016/0022-0396(84)90153-0
[11] Esteban, M.: Nonsymmetric ground states of symmetric variational problems. Commun. Pure Appl. Math. 44 (1991), 259–274. DOI 10.1002/cpa.3160440205 | MR 1085830 | Zbl 0826.49002
[12] Gidas, B., Ni, W. M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209–243. DOI 10.1007/BF01221125 | MR 0544879 | Zbl 0425.35020
[13] Gerdes, K., Schwab, C.: Hierarchic models of Helmholtz problems on thin domains. Math. Models & Methods Appl. Sci., to appear. MR 1611995 | Zbl 0957.74026
[14] Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Springer Lecture Notes in Mathematics 1150 (1985). MR 0810619 | Zbl 0593.35002
[15] Kawohl, B., Sweers, G.: Remarks on eigenvalues and eigenfunctions of a special elliptic systems. J. Appl. Math. Phys. (ZAMP) 38 (1987), 730–740. DOI 10.1007/BF00948293 | MR 0917475
[16] Kawohl, B.: A conjectured heat flow problem, Solution. SIAM Review 37 (1995), 105–106.
[17] Kawohl, B.: Instability criteria for solutions of second order elliptic quasilinear differential equations. In: Partial differential equations and applications. Eds. P. Marcellini, G. Talenti, E. Vesentini. Marcel Dekker, Lecture Notes in Pure and Applied Math. 177 (1996), 201–207. MR 1371592 | Zbl 0854.35012
[18] Kawohl, B.: A short note on hot spots. Zeitschr. Angew. Math. Mech, Suppl. 2, 76 (1996), 569–570. Zbl 0900.35159
[19] Kawohl, B.: The opaque square and the opaque circle. In: General Inequalities VII, Int. Ser. Numer. Math. 123 (1997), 339–346. MR 1457290 | Zbl 0907.68135
[20] Klamkin, M. S.: A conjectured heat flow problem, Problem. SIAM Review 36 (1994), 107. DOI 10.1137/1036007
[21] Littlewood, J. E.: A Mathematician’s Miscellany. Methuen & Co. Ltd., London 1953. Zbl 0051.00101
[22] Lopez, O.: Radial and nonradial minimizers for some radially symmetric functionals. Electronic Journal of Differential equations 1996 (3), 1–14. http://ejde.math.swt.edu
[23] Rademacher, H., Toeplitz, O.: Von Zahlen und Figuren. Springer, Berlin 1930. Anglický překlad: The enjoyment of mathematics, Princeton, Univ. Press, Princeton 1994.
[24] Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43 (1971), 304–318. DOI 10.1007/BF00250468 | MR 0333220 | Zbl 0222.31007
[25] Weinberger, H.: Remark on the preceding paper of Serrin. Arch. Ration. Mech. Anal. 43 (1971), 319–320. DOI 10.1007/BF00250469 | MR 0333221 | Zbl 0222.31008
[26] Renardy, M., Rogers, R. C.: An Introduction to Partial Differential Equations. Springer-Verlag 1992. MR 2028503
Partner of
EuDML logo