Previous |  Up |  Next

Article

References:
[1] Björck, A.: Numerical methods for least squares problems. 408 str., SIAM 1996. MR 1386889
[2] Bühler, W. K.: GAUSS, eine biographische Studie. Springer Verlag, 1987. MR 0967076
[3] Collins II, G. W.: The Foundation of celestial mechanics. Astronomy and Astrophysics Series, vol. 16, Pachart Publishing House, Tuscon 1989.
[4] Danjon, A.: Astronomie genérale. Albert Blanchard, Paris, Seconde éd., 1986.
[5] Deuflhard, P.: Newton methods for nonlinear problems. Affine invariance and adaptive algorithms. V tisku, Springer Verlag 2002. MR 2063044
[6] Field, J. V.: Rediscovering the Archimedean polyhedra: Piero della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Dürer, Daniele Barbaro, and Johannes Kepler. Arch. History Exact Sc. 50 (1996), 241–289. MR 1457069
[7] Funk, M., Minor, H.-E.: Eislawinen in den Alpen: Erfahrungen mit Schutzmassnahmen und Früherkennungsmethoden. Wasserwirtschaft vol. 91 (2001), 362–368.
[8] Gauss, C. F.: Summarische Übersicht der zur Bestimmung der Bahnen der beiden neuen Hauptplaneten angewandten Methoden. Monatliche Correspondenz, hearusgeg. Freiherr von Zach, Sept. 1809, Werke, vol. 6, 148–165.
[9] Gauss, C. F.: Theoria motus corporum coelestium. Perthes et Besser, Hamburgi (1809), Werke vol. 7, 1–288.
[10] Gauss, C. F.: Theoria combinationis observationum erronibus minimis obnoxiae. Pars Prior et Pars Post., Comm. Soc. Reg. Scient. Gott. 5 (1823), Werke, vol. 4, 1–26, 27–53; Supplementum Comm. Soc. Reg. Scient. Gott. 6 (1828), Werke, vol. 4, 55–93.
[11] Gauss, C. F.: Elliptische Bahnbestimmung. Aus Gauss’ Nachlass, Werke, vol. 11, 221–252.
[12] Goldstine, H. H.: A history of numerical analysis from the 16th through the 19th century. Springer Verlag, 1977. MR 0484905 | Zbl 0402.01005
[13] Letze, O., Buchsteiner, T.: Leonardo da Vinci, scientist inventor artist. Exhibition Catalog 1999, Verlag Gerd Hajte, Ostfildern-Ruit, Germany.
[14] Pearson, K.: On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Phil. Mag. (5) 50 (1900), 157–175; corr. Phil. Mag. (6) 1 (1901), 670–671.
[15] Plackett, R. L.: Studies in the history of probability and statistics. XXIX, The discovery of the method of least squares. Biometrika 59 (1972), 239–251. MR 0326871
[16] Stewart, G. W.: Gauss, Theory of the combination of observations least subject to errors. Bilingual edition of [10] with an Afterword, Classics in Appl. Math., SIAM 1995. MR 1329543
[17] Stigler, S. M.: Gauss and the invention of least squares. The Annals of Stat. 9 (1981), 465–474. MR 0615423 | Zbl 0477.62001
[18] Teets, D., Whitehead, K.: The discovery of Ceres: How Gauss became famous. Math. Magazine 72 (1999), 83–93. MR 1701711 | Zbl 1005.01007
[19] Zach, F. X. von: Fortgesetzte Nachrichten über den längst vermutheten neuen HauptP̄laneten unseres Sonnen-Systems. In Gauss Werke, vol. 6, 199–204.
Partner of
EuDML logo