[1] Arhangel'skii A.V.:
Topological properties of function spaces: duality theorems. Soviet Math. Doc. 269 (1982), 1289–1292.
MR 0705371
[2] Arhangel'skii A.V.:
Topological Function Spaces. Kluwer Academic Publishers, 1992.
MR 1485266
[4] Barr M., Burgess W.D., Raphael R.:
Ring epimorphisms and $C(X)$. Theory Appl. Categ. 11 (2003), no. 12, 283–308.
MR 1988400 |
Zbl 1042.54007
[5] Burgess W.D., Raphael R.:
Compactifications, $C(X)$ and ring epimorphisms. Theory Appl. Categ. 16 (2006), no. 21, 558–584.
MR 2259263 |
Zbl 1115.18001
[6] van Douwen E.K.:
Density of compactifications. Set-theoretic Topology, Academic Press, New York, 1977, pp. 97-110.
MR 0442887 |
Zbl 0379.54006
[7] Galvin F.: Problem 6444. Amer. Math. Monthly 90 (1983), no. 9, 648; solution: Amer. Math. Monthly 92 (1985), no. 6, 434.
[8] Hrušák M., Raphael R., Woods R.G.:
On a class of pseudocompact spaces derived from ring epimorphisms. Topology Appl. 153 (2005), 541–556.
MR 2193326
[9] Levy R., Rice M.D.:
Normal $P$ spaces and the $G_\delta$-topology. Colloq. Math. 44 (1981), 227–240.
MR 0652582 |
Zbl 0496.54034
[14] Pełczyński A., Semadeni Z.:
Spaces of continuous functions III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets. Studia Math. 18 (1959), 211–222.
MR 0107806
[15] Raphael M., Woods R.G.:
The epimorphic hull of $C(X)$. Topology Appl. 105 (2002), 65–88.
MR 1761087 |
Zbl 1069.18001
[16] Reznichenko E.A.:
A pseudocompact space in which only sets of complete cardinality are not closed and not discrete. Moscow Univ. Math. Bull. (1989), no. 6, 69–70.
MR 1065983