Previous |  Up |  Next

Article

Keywords:
derivation; local derivation
Summary:
The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra $A$ that all of its squares are positive and satisfying the following property: Every continuous bilinear map $\Phi $ from $A\times A$ into an arbitrary Banach space $B$ such that $\Phi(a,b)=0$ whenever $ab=0$, satisfies the condition $\Phi (ab,c)=\Phi(a,bc)$ for all $a,b,c\in A$.
References:
[1] Alaminos J., Brešar M., Cerne M., Extremera J., Villena A.R.: Zero product preserving maps on $C^{1}[0,1]$. J. Math. Anal. Appl. 347 (2008), 472–481. DOI 10.1016/j.jmaa.2008.06.037 | MR 2440343
[2] Alaminos J., Brešar M., Extremera J., Villena A.R.: Maps preserving zero products. Studia Math. 193 (2009), 131–159. DOI 10.4064/sm193-2-3 | MR 2515516
[3] Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, Orlando, 1985. MR 0809372 | Zbl 1098.47001
[4] Buskes G., van Rooij A.: Almost $f$-algebras: commutativity and the Cauchy-Schwarz inequality. Positivity 4 (2000), 227–331. DOI 10.1023/A:1009826510957 | MR 1797125 | Zbl 0987.46002
[5] Diem J.E.: A radical for lattice-ordered rings. Pacific J. Math. 25 (1968), 71–82. DOI 10.2140/pjm.1968.25.71 | MR 0227068 | Zbl 0157.08004
[6] Kadison R.V.: Local derivations. J. Algebra 130 (1990), 494–509. DOI 10.1016/0021-8693(90)90095-6 | MR 1051316 | Zbl 0751.46041
[7] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam, 1971.
[8] De Pagter B.: f-algebras and orthomorphisms. Thesis, Leiden, 1981.
[9] Schaefer H.H.: Banach lattices and positive operators. Springer, New York, 1974. MR 0423039 | Zbl 0296.47023
Partner of
EuDML logo