Previous |  Up |  Next

Article

Keywords:
loop; inner mapping group
Summary:
We show that finite commutative inverse property loops with elementary abelian inner mapping groups of order $p^4$ are centrally nilpotent of class at most two.
References:
[1] Bruck R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245–354. MR 0017288 | Zbl 0061.02201
[2] Csörgö P.: On connected transversals to abelian subgroups and loop theoretical consequences. Arch. Math. (Basel) 86 (2006), 6 499–516. DOI 10.1007/s00013-006-1379-5 | MR 2241599 | Zbl 1113.20055
[3] Csörgö P.: Abelian inner mappings and nilpotency class greater than two. European J. Combin. 28 (2007), 3 858–867. DOI 10.1016/j.ejc.2005.12.002 | MR 2300766 | Zbl 1149.20053
[4] Drápal A., Vojtěchovský P.: Explicit constructions of loops with commuting inner mappings. European J. Combin. 29 (2008), 7 1662–1681. DOI 10.1016/j.ejc.2007.10.001 | MR 2431758 | Zbl 1168.20031
[5] Kepka T., Niemenmaa M.: On multiplication groups of loops. J. Algebra 135 (1990), 112–122. DOI 10.1016/0021-8693(90)90152-E | MR 1076080 | Zbl 0706.20046
[6] Kepka T., Niemenmaa M.: On connected transversals to abelian subgroups in finite groups. Bull. London Math. Soc. 24 (1992), 343–346. DOI 10.1112/blms/24.4.343 | MR 1165376 | Zbl 0793.20064
[7] Kepka T., Niemenmaa M.: On connected transversals to abelian subgroups. Bull. Australian Math. Soc. 49 (1994), 121–128. DOI 10.1017/S0004972700016166 | MR 1262682 | Zbl 0799.20020
[8] Kinyon M.: private communication. 2009.
[9] Niemenmaa M.: On finite loops whose inner mapping groups are abelian II. Bull. Australian Math. Soc. 71 (2005), 487–492. DOI 10.1017/S0004972700038491 | MR 2150938 | Zbl 1080.20061
[10] Niemenmaa M., Rytty M.: Connected transversals and multiplication groups of loops. Quasigroups and Related Systems 15 (2007), 95–107. MR 2379127 | Zbl 1133.20009
Partner of
EuDML logo