Article
Keywords:
integral equation; resolvent
Summary:
In this paper we study a linear integral equation $x(t)=a(t)-\int ^t_0 C(t,s) x(s) {\rm d} s$, its resolvent equation $R(t,s)=C(t,s)-\int ^t_s C(t,u)R(u,s) {\rm d} u$, the variation of parameters formula $x(t)=a(t)-\int ^t_0 R(t,s)a(s) {\rm d} s$, and a perturbed equation. The kernel, $C(t,s)$, satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of $C$ and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.
References:
[1] Burton, T. A.: Liapunov Functionals for Integral Equations. Trafford, Victoria, B. C., Canada (2008) (www.trafford.com/08-1365).
[9] Volterra, V.: Sur la théorie mathématique des phénomès héréditaires. J. Math. Pur. Appl. 7 (1928), 249-298.