Previous |  Up |  Next

Article

Keywords:
intersection graphs; finite groups; subgroups
Summary:
In this paper we classify finite groups with disconnected intersection graphs of subgroups. This solves a problem posed by Csákány and Pollák.
References:
[1] Aschbacher, M.: On the maximal subgroups of the finite classical groups. Invent. Math. 76 (1984), 469-514. DOI 10.1007/BF01388470 | MR 0746539 | Zbl 0537.20023
[2] Bosák, J.: The graphs of semigroups. Theory Graphs Appl., Proc. Symp. Smolenice 1963 (1964), 119-125. MR 0173718
[3] Carter, R.: Simple Groups of Lie Type. Wiley London (1972). MR 0407163 | Zbl 0248.20015
[4] Chakrabarty, I., Ghosh, S., Mukherjee, T. K., Sen, M. K.: Intersection graphs of ideals of rings. Electronic Notes in Discrete Mathematics 23 (2005), 23-32. DOI 10.1016/j.endm.2005.06.104 | MR 2303891 | Zbl 1193.05086
[5] Csákéany, B., Pollák, G.: The graph of subgroups of a finite group. Czechoslovak Math. J. 19 (1969), 241-247. MR 0249328
[6] Kondrat'ev, A. S.: Prime graph components of finite simple groups. Math. USSR Sb. 67 (1989), 235-247. DOI 10.1070/SM1990v067n01ABEH001363 | MR 1015040 | Zbl 0691.20013
[7] Robinson, D. J. S.: A Course in the Theory of Groups. Springer New York-Heidelberg-Berlin (1982). MR 0648604 | Zbl 0483.20001
[8] Williams, J. S.: Prime graph components of finite groups. J. Algebra 69 (1981), 487-513. DOI 10.1016/0021-8693(81)90218-0 | MR 0617092 | Zbl 0471.20013
[9] Zelinka, B.: Intersection graphs of finite abelian groups. Czech. Math. J. 25 (1975), 171-174. MR 0372075 | Zbl 0311.05119
Partner of
EuDML logo