Previous |  Up |  Next

Article

Keywords:
transversal bi-energy; transversal biwave field; transversal biwave map
Summary:
In this paper, we prove that the composition of a transversal biwave map and a transversally totally geodesic map is a transversal biwave map. We show that there are biwave maps which are not transversal biwave maps, and there are transversal biwave maps which are not biwave maps either. We prove that if $f$ is a transversal biwave map satisfying certain condition, then $f$ is a transversal wave map. We finally study the transversal conservation laws of transversal biwave maps.
References:
[1] Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Internat. J. Math. 12 (8) (2001), 867–876. DOI 10.1142/S0129167X01001027 | MR 1863283
[2] Caddeo, R., Montaldo, S., Piu, P.: Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino 62 (3) (2004), 265–278. MR 2129448
[3] Chang, Sun-Yung A., Wang, L., Yang, P. C.: Regularity of biharmonic maps. Comm. Pure Appl. Math. 52 (9) (1999), 1099–1111. DOI 10.1002/(SICI)1097-0312(199909)52:9<1099::AID-CPA3>3.0.CO;2-O | MR 1692152
[4] Chiang, Y. J.: Biwave maps into manifolds. Internat. J. Math. Math. Sci. Article ID 104274 (2009), 1–14. DOI 10.1155/2009/104274 | MR 2515931 | Zbl 1169.53336
[5] Chiang, Y. J., Sun, H.: 2-harmonic totally real submanifolds in a complex projective space. Bull. Inst. Math. Acad. Sinica 27 (2) (1999), 99–107. MR 1697219 | Zbl 0960.53036
[6] Chiang, Y. J., Sun, H.: Biharmonic Maps on V-Manifolds. Internat. J. Math. Math. Sci. 27 (2001), 477–484. DOI 10.1155/S0161171201006731 | MR 1869649 | Zbl 1012.58012
[7] Chiang, Y. J., Wolak, R.: Transversally biharmonic maps between foliated Riemannian manifolds. Internat. J. Math. 19 (9) (2008), 1–16. DOI 10.1142/S0129167X08004972 | MR 2446510 | Zbl 1160.53012
[8] Chiang, Y. J., Yang, Y. H.: Exponential wave maps. J. Geom. Phys. 57 (2007), 2521–2532. DOI 10.1016/j.geomphys.2007.09.003 | MR 2369837 | Zbl 1134.58006
[9] Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc. 10 (1978), 1–68. DOI 10.1112/blms/10.1.1 | MR 0495450 | Zbl 0401.58003
[10] Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. London Math. Soc. 20 (1988), 385–524. DOI 10.1112/blms/20.5.385 | MR 0956352 | Zbl 0669.58009
[11] Eells, J., Sampson, J. H.: Harmonic mappings between Riemannian manifolds. Amer. J. Math. 86 (1964), 109–160. DOI 10.2307/2373037 | MR 0164306
[12] Eells, J., Verjovsky, A.: Harmonic and Riemannian foliations. Bol. Soc. Mat. Mexicana (3) 4 (1998), 1–12. MR 1625589 | Zbl 0905.57019
[13] Evans, L. C.: Partial Differential Equations. vol. 19, Grad. Stud. Math., 1998. Zbl 0902.35002
[14] Hilbert, D.: Die Grundlagen der Physik. Math. Ann. 92 (1924), 1–32. DOI 10.1007/BF01448427 | MR 1512197
[15] Jiang, G. Y.: 2-harmonic maps between Riemannian manifolds. Annals of Math., China 7A (4) (1986), 389–402. MR 0886529
[16] Jiang, G. Y.: The 2-harmonic isometric immersions between Riemannian manifolds. Annals of Math., China 7A (2) (1986), 130–144. MR 0858581
[17] Jiang, G. Y.: the conservation law of 2-harmonic maps between Riemannian manifolds. Acta Math. Sinica 30 (2) (1987), 220–225. MR 0891928
[18] Kacimi, A. El, Gomez, E. Gallego: Foliated harmonic maps. Illinois J. Math. 40 (1996), 115–122. MR 1386316
[19] Klainerman, S., Machedon, M.: Smoothing estimates for null forms and applications. Duke Math. J. 81 (1995), 99–133. DOI 10.1215/S0012-7094-95-08109-5 | MR 1381973 | Zbl 0909.35094
[20] Klainerman, S., Machedon, M.: On the optimal local regularity for gauge fields theories. Differential Integral Equations 10 (6) (1997), 1019–1030. MR 1608017
[21] Konderak, J. J., Wolak, R.: Transversally harmonic maps between manifolds with Riemannian foliations. Quart. J. Math. Oxford Ser. (2) 54 (Part 3) (2003), 335–354. DOI 10.1093/qmath/hag019 | MR 2013142 | Zbl 1059.53051
[22] Konderak, J. J., Wolak, R.: Some remarks on transversally harmonic maps. Glasgow J. Math. 50 (1) (2008), 1–16. MR 2381726 | Zbl 1138.53025
[23] Lopez, J. A., Masa, X. M.: Morphisms between complete Riemannian pseudogroups. Topology Appl. 155 (2008), 544–604. DOI 10.1016/j.topol.2007.12.001 | MR 2388956 | Zbl 1147.57025
[24] Loubeau, E., Oniciuc, C.: On the biharmonic and harmonic indices of the Hopf map. Trans. Amer. Math. Soc. 359 (11) (2007), 5239–5256. DOI 10.1090/S0002-9947-07-03934-7 | MR 2327029 | Zbl 1124.58009
[25] Molino, P.: Riemannian Foliations. Birkhauser, Bassel, 1988. MR 0932463 | Zbl 0824.53028
[26] Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47 (2006), 1–22. MR 2301373 | Zbl 1140.58004
[27] Nahmod, A., Stefanov, A., Uhlenbeck, K.: On the well-posedness of the wave map problem in high dimensions. Comm. Anal. Geom. 11 (1) (2003), 49–83. MR 2016196 | Zbl 1085.58022
[28] O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, 1983. MR 0719023
[29] Shatah, J., Struwe, M.: Geometric wave equations. Courant Lecture Notes in Math., 2 (2000), viii+153 pp. MR 1674843 | Zbl 1051.35500
[30] Shatah, J., Struwe, M.: The Cauchy problem for wave maps. Int. Math. Res. Not. 11 (2002), 555–571. DOI 10.1155/S1073792802109044 | MR 1890048 | Zbl 1024.58014
[31] Tao, T.: Global regularity of wave maps. I. Small critical Sobolev norm in high dimension. Internat. Math. Res. Notices 6 (2001), 299–328. MR 1820329 | Zbl 0983.35080
[32] Tao, T.: Global regularity of wave maps. II. Small energy in two dimension. Comm. Math. Phys. 224 (2001), 443–544. DOI 10.1007/PL00005588 | MR 1869874
[33] Tataru, D.: The wave maps equations. Bull. Amer. Math. Soc. 41 (2004), 185–204. DOI 10.1090/S0273-0979-04-01005-5 | MR 2043751
[34] Tataru, D.: Rough solutions for the wave maps equation. Amer. J. Math. 127 (5) (2005), 293–377. DOI 10.1353/ajm.2005.0014 | MR 2130618
[35] Tondeur, P.: Geometry of Foliation. Birkhauser, Bassel, 1997. MR 1456994
[36] Wang, C.: Biharmonic maps from $R^4$in to a Riemannian manifold. Math. Z. 247 (2004), 65–87. DOI 10.1007/s00209-003-0620-1 | MR 2054520
[37] Wolak, R.: Foliated and associated geometric structures on foliated manifolds. Ann. Fac. Sci. Toulouse Math. (6) 10 (1989), 337–360. DOI 10.5802/afst.681 | MR 1425491 | Zbl 0698.57007
Partner of
EuDML logo