Previous |  Up |  Next

Article

Keywords:
optimal sampling design; spatial statistics; random process; nonlinear regression; information matrix
Summary:
A random process (field) with given parametrized mean and covariance function is observed at a finite number of chosen design points. The information about its parameters is measured via the Fisher information matrix (for normally distributed observations) or using information functionals depending on that matrix. Conditions are stated, under which the contribution of one design point to this information is zero. Explicit expressions are obtained for the amount of information coming from a selected subset of a given design. Relations to some algorithms for optimum design of experiments in case of correlated observations are indicated.
References:
[1] Brimkulov, U. N., Krug, G. V., Savanov, V. L.: Numerical construction of exact experimental designs when the measurements are correlated. (In Russian.) Industr. Laboratory 36 (1980), 435–442.
[2] Cressie, N. A. C.: Statistics for Spatial Data. Second edition. Wiley, New York 1993. MR 1239641
[3] Fedorov, V. V.: Design of spatial experiments: model fitting and prediction. In: Handbook of Statistics (S. Gosh and C. R. Rao, eds.), Vol. 13, Elsevier, Amsterdam 1996, pp. 515–553. MR 1492578 | Zbl 0910.62071
[4] Fedorov, V. V., Müller, W. G.: Optimum design for correlated fields via covariance kernel expansions. In: Model Oriented Data and Analysis 8, (J. Lopez-Fidalgo, J. H. Rodriguez-Diaz, and B. Torsney, eds.), Physica-Verlag, Heidelberg 2007, pp. 57–66. MR 2409030
[5] Harville, D. A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York 1997. MR 1467237 | Zbl 0881.15001
[6] Müller, W. G.: Collecting Spatial Data. Third edition. Springer, Heidelberg 2007. Zbl 1266.62048
[7] Müller, W. G., Pázman, A.: An algorithm for the computation of optimum designs under a given covariance structure. Comput. Statist. 14 (1999), 197–211. MR 1712010
[8] Müller, W. G., Pázman, A.: Measures for designs in experiments with correlated errors. Biometrika 90 (2003), 423–445. DOI 10.1093/biomet/90.2.423 | MR 1986657 | Zbl 1035.62077
[9] Näther, W.: Exact designs for regression models with correlated errors. Statistics 16 (1985), 479–484. DOI 10.1080/02331888508801879 | MR 0803486
[10] Pázman, A.: Criteria for optimal design of small-sample experiments with correlated observations. Kybernetika 43 (2007), 453–462. MR 2377923 | Zbl 1134.62055
[11] Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York 1993. MR 1211416 | Zbl 0834.62068
[12] Sacks, J., Ylvisaker, D.: Design for regression problems with correlated errors. Ann. Math. Statist. 37 (1966), 66–84. DOI 10.1214/aoms/1177699599 | MR 0192601
[13] Zimmerman, D. L.: Optimum network design for spatial prediction, covariance parameter estimation and empirical prediction. Environmetrics 17 (2006), 635–652. DOI 10.1002/env.769 | MR 2247174
Partner of
EuDML logo