[2] Cai, J. J., Ma, X. Q., Li, X.:
Chaotic ant swarm optimization to economic dispatch. Electron. Power Systems Research 77 (2007), 10, 1373–1380.
DOI 10.1016/j.epsr.2006.10.006
[4] HART, W. E.:
Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization. IEEE Trans. Evol. Comput. 5 (2001), 4, 388–397.
DOI 10.1109/4235.942532
[5] He, Y. Y., Zhou, J. Z., Li, C. S.: A precise chaotic particle swarm optimization algorithm based on improved tent map. ICNC 7 (2008), 569–573.
[6] He, Y. Y., Zhou, J. Z., Xiang, X. Q.:
Comparison of different chaotic maps in particle swarm optimization algorithm for long term cascaded hydroelectric system scheduling. Chaos Solitons Fractals 42 (2009), 5, 3169–3176.
DOI 10.1016/j.chaos.2009.04.019 |
Zbl 1198.90184
[7] He, Y. Y., Zhou, J. Z., Qin, H.: Flood disaster classification based on fuzzy clustering iterative model and modified differential evolution algorithm. FSKD 3 (2009), 85–89.
[10] Kennedy, J., Eberhan, R. J.: Particle swarm optimization. In: IEEE Internat. Conf on Neural Networks 1995, Vol. 4, pp. 1942–1948.
[11] Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. Technical Report TR-95-012, International Computer Science Institute, Berkeley 1995.
[13] Storn, R., Price, K.: Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces. University of California, Berkeley 2006.
[16] Yang, D. X., Li, G., Cheng, G. D.:
On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 34 (2007), 1366–1375.
DOI 10.1016/j.chaos.2006.04.057
[18] Yuan, X. F., Wang, Y. N., Wu, L. H.:
Pattern search algorithm using chaos and its application. J. of Hunan University (Natural Sciences) 34 (2007), 9, 30-33.
Zbl 1150.68455
[19] Zhang, L., Zhang, C. J.:
Hopf bifurcation analysis of some hyperchaotic systems with time-delay controllers. Kybernetika 44 (2008), 1, 35–42.
MR 2405053 |
Zbl 1145.93361
[20] Zhu, Z. L., Li, S. P., Yu, H.:
A new approach to generalized chaos synchronization based on the stability of the error System. Kybernetika 44 (2008), 4, 492–500.
MR 2459067 |
Zbl 1172.93015