Previous |  Up |  Next

Article

Keywords:
tropical convexity; fuzzy algebra; separation
Summary:
The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry.
References:
[1] Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence, RI 1993. Zbl 0537.06001
[2] Cechlárová, K.: Eigenvectors in bottleneck algebra. Linear Algebra Appl. 175 (1992), 63–73. MR 1179341
[3] Cohen, G., Gaubert, S., Quadrat, J. P., Singer, I.: Max-plus convex sets and functions. In: Idempotent Mathematics and Mathematical Physics (G. Litvinov and V. Maslov, eds.), AMS, Providence 2005, pp. 105–129. E-print arXiv:math/0308166. MR 2149000 | Zbl 1093.26005
[4] Develin, M., Sturmfels, B.: Tropical convexity. Documenta Math. 9 (2004), 1–27. E-print arXiv:math/0308254. MR 2054977 | Zbl 1054.52004
[5] Gaubert, S., Katz, R.: Max-plus convex geometry. In: Lecture Notes in Computer Science 4136, Springer, New York 2006. pp. 192–206. DOI 10.1007/11828563_13 | MR 2281601 | Zbl 1134.52303
[6] Gaubert, S., Sergeev, S.: Cyclic projectors and separation theorems in idempotent convex geometry. J. Math. Sci. 155 (2008), 6, 815–829. E-print arXiv:math/0706.3347. DOI 10.1007/s10958-008-9243-8 | MR 2366235 | Zbl 1173.47045
[7] Gavalec, M.: Periodicity in Extremal Algebras. Gaudeamus, Hradec Králové 2004.
[8] Gavalec, M., Plávka, J.: Strong regularity of matrices in general max-min algebra. Linear Algebra Appl. 371 (2003), 241–254. MR 1997373
[9] Golan, J.: Semirings and Their Applications. Kluwer, Dordrecht 2000. MR 1746739 | Zbl 0947.16034
[10] Litvinov, G. L., Maslov, V. P., Shpiz, G. B.: Idempotent functional analysis: an algebraic approach. Math. Notes 69 (2001), 5, 758–797. MR 1846814 | Zbl 1017.46034
[11] Nitica, V.: The structure of max-min hyperplanes. Linear Algebra Appl. (2009), doi:10.1016/j.laa.2009.08.022. MR 2566489 | Zbl 1180.52005
[12] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces. I. Optimization 56 (2007), 171–205. DOI 10.1080/02331930600819852 | MR 2288512 | Zbl 1127.52001
[13] Nitica, V., Singer, I.: Max-plus convex sets and max-plus semispaces. II. Optimization 56 (2007), 293–303. DOI 10.1080/02331930601123031 | MR 2326254 | Zbl 1127.52001
[14] Nitica, V., Singer, I.: Contributions to max-min convex geometry. I. Segments. Linear Algebra Appl. 428 (2008), 7, 1439–1459. DOI 10.1016/j.laa.2007.09.032 | MR 2388630 | Zbl 1134.52300
[15] Nitica, V., Singer, I.: Contributions to max-min convex geometry. II. Semispaces and convex sets. Linear Algebra Appl. 428 (2008), 8–9, 2085–2115. MR 2401643 | Zbl 1134.52300
[16] Sergeev, S. N.: Algorithmic complexity of a problem of idempotent convex geometry. Math. Notes 74 (2003), 6, 848–852. DOI 10.1023/B:MATN.0000009021.18823.52 | MR 2054008 | Zbl 1108.52301
[17] Zimmermann, K.: A general separation theorem in extremal algebras. Ekonom.-Mat. Obzor 13 (1977), 179–201. MR 0453607 | Zbl 0365.90127
[18] Zimmermann, K.: Convexity in semimodules. Ekonom.-Mat. Obzor 17 (1981), 199–213. MR 0629908 | Zbl 0477.52002
Partner of
EuDML logo