[2] Alvarez, F., López, J., C., H. Ramírez: Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and classification by hyperplanes. To appear in Optimization Methods and Software.
[3] Auslender, A., C., H. Ramírez:
Penalty and barrier methods for convex semidefinite programming. Math. Methods Oper. Res. 43 (2006), 2, 195–219.
MR 2264746
[4] Bayer, D. A., Lagarias, J. C.:
The nonlinear geometry of linear programming I. Affine and projective scaling trajectories. Trans. Amer. Math. Soc. 314 (1989), 499–526.
MR 1005525 |
Zbl 0671.90045
[5] Neto, J. X. Cruz, Ferreira, O. P., Oliveira, P. R., Silva, R. C. M.: Central paths in semidefinite programming, generalized proximal point method and Cauchy trajectories in Riemannian manifolds. J. Optim. Theory Appl. 1 (2008), 1–16.
[10] Iusem, A. N., Svaiter, B. F., Neto, J. X. da Cruz:
Central paths, generalized proximal point methods and Cauchy trajectories in Riemannian manifolds. SIAM J. Control Optim. 37 (1999), 2, 566–588.
DOI 10.1137/S0363012995290744 |
MR 1670649
[11] Klerk, E. de:
Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. (Applied Optimization 65.) Kluwer Academic Publishers, Dordrecht 2002.
MR 2064921 |
Zbl 0991.90098
[12] Kojima, M., Shindoh, S., Hara, S.:
Interior-point methods for the monotone semidefinite linear complementary problem in symmetic matrices. SIAM J. Optim. 7 (1997), 86–125.
DOI 10.1137/S1052623494269035 |
MR 1430559
[15] Lojasiewicz, S.: Ensembles Semi-analitiques. Inst. Hautes Études Sci., Bures-sur-Yvette 1965.
[16] Petersen, P.:
Riemannian Geometry. Springer-Verlag, New York 1998.
MR 1480173
[18] Shapiro, A.: On Differentiability of Symmetric Matrix Valued Functions. Technical Report, School of Industrial and Systems Engineering, Georgia Institute of Technology, 2002.