Previous |  Up |  Next

Article

Keywords:
(max, min) algebra; eigenvector; circulant matrix
Summary:
The eigenproblem of a circulant matrix in max-min algebra is investigated. Complete characterization of the eigenspace structure of a circulant matrix is given by describing all possible types of eigenvectors in detail.
References:
[1] Cechlárová, K.: Eigenvectors in bottleneck algebra. Lin. Algebra Appl. 175 (1992), 63–73. DOI 10.1016/0024-3795(92)90302-Q | MR 1179341
[2] Cuninghame-Green, R. A.: Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 166.) Springer–Verlag, Berlin, 1979. MR 0580321 | Zbl 0739.90073
[3] Cuninghame-Green, R. A.: Minimax Algebra and Application. In: Advances in Imaging and Electron Physics 90 (P. W. Hawkes, ed.), Academic Press, New York 1995.
[4] Gavalec, M.: Monotone eigenspace structure in max-min algebra. Lin. Algebra Appl. 345 (2002), 149–167. DOI 10.1016/S0024-3795(01)00488-8 | MR 1883271 | Zbl 0994.15010
[5] Gavalec, M., Plavka, J.: Eigenproblem in extremal algebras. In: Proc. 9th Internat. Symposium Operations Research ’07, Nova Gorica, Slovenia 2007. Zbl 1135.15004
[6] Gray, R. M.: Toeplitz and Circulant Matrices. Now Publishers, Delft 2006. Zbl 1115.15021
[7] Plavka, J.: Eigenproblem for circulant matrices in max-algebra. Optimization 50 (2001), 477–483. DOI 10.1080/02331930108844576 | MR 1892917 | Zbl 1005.90054
[8] Plavka, J.: l-parametric eigenproblem in max algebra. Discrete Applied Mathematics 150 (2005), 16–28. DOI 10.1016/j.dam.2005.02.017 | MR 2161336
[9] Zimmermann, K.: Extremal Algebra (in Czech). Ekon. ústav ČSAV, Praha 1976.
[10] Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structure. (Ann. Discrete Math. 10.) North Holland, Amsterdam 1981. MR 0609751
Partner of
EuDML logo