Previous |  Up |  Next

Article

Keywords:
finite elements; generic programming
Summary:
In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying polynomial degree. The underlying Dune software framework provides parallelization and dimension-independence.
References:
[1] Bastian, P., Blatt, M.: On the generic parallelisation of iterative solvers for the finite element method. Internat. J. Comput. Sci. Engrg. 4 (2008), 1, 56–69.
[2] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework. Computing 82 (2008), 2-3, 103–119. MR 2421579
[3] Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE. Computing 82 (2008), 2-3, 121–138. MR 2421580
[4] Blatt, M., Bastian, P.: The iterative solver template library. In: Applied Parallel Computing. State of the Art in Scientific Computing (B. Kagstrüm, E. Elmroth, J. Dongarra, and J. Wasniewski, eds.) (Lecture Notes in Sci. Comput. 4699.) Spinger, Berlin 2007, pp. 666–675.
[5] Bramble, J. H., Pasciak, J. E., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55 (1990), 1–22. DOI 10.1090/S0025-5718-1990-1023042-6 | MR 1023042 | Zbl 0725.65095
[6] Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models and Methods in Applied Sciences 15 (2005), 10, 1533–1551. DOI 10.1142/S0218202505000832 | MR 2168945 | Zbl 1083.65099
[7] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia 2002. MR 1930132 | Zbl 0547.65072
[8] Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.: A generic interface for parallel and adaptive scientific computing: Abstraction principles and the Dune-Fem module. Preprint No. 3, Mathematisches Institut, Universität Freiburg, 2009. Submitted to Transactions on Mathematical Software.
[9] http://www.dune-project.org/, Dune Homepage, link visited August 3, 2009.
[10] Geuzaine, C., Remacle, J.-F.: Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. Internat. J. Num. Methods in Eng., 2009. http://www.geuz.org/gmsh/, link visited August 3, 2009. MR 2566786 | Zbl 1176.74181
[11] Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface – A Contribution to the Modeling of Hydrosystems. Springer–Verlag, 1997.
[12] Oden, J. T., Babuška, I., Baumann, C. E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998), 491–519. DOI 10.1006/jcph.1998.6032 | MR 1654911
[13] http://www.opencascade.com/, link visited August 3, 2009.
[14] http://www.paraview.org/, link visited August 3, 2009.
[15] http://www.mcs.anl.gov/petsc/petsc-as/, link visited August 5, 2009.
[16] http://www.salome-platform.org/, link visited August 3, 2009.
[17] http://trilinos.sandia.gov/, link visited August 5, 2009.
[18] Vandevoorde, D., Josuttis, N. M.: C++ Templates – The Complete Guide. Addison-Wesley, 2003.
Partner of
EuDML logo