Previous |  Up |  Next

Article

Keywords:
Holomorphically projective mapping; equiaffine space; affine-connected space; semisymmetric space; Riemannian space; Kählerian space
Summary:
In this paper we consider holomorphically projective mappings from the compact semisymmetric spaces $A_n$ onto (pseudo-) Kählerian spaces $\bar{K}_n$. We proved that in this case space $A_n$ is holomorphically projective flat and $\bar{K}_n$ is space with constant holomorphic curvature. These results are the generalization of results by T. Sakaguchi, J. Mikeš, V. V. Domashev, N. S. Sinyukov, E. N. Sinyukova, M. Škodová, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
References:
[1] Beklemishev, D. V.: Differential geometry of spaces with almost complex structure. Geometria. Itogi Nauki i Tekhn., All-Union Inst. for Sci. and Techn. Information (VINITI), Akad. Nauk SSSR, Moscow, (1965), 165–212. MR 0192434
[2] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian manifolds of conullity two. World Sci., 1996. MR 1462887 | Zbl 0904.53006
[3] Domashev, V. V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23, 2 (1978), 297–304. DOI 10.1007/BF01153160 | MR 0492674
[4] Kurbatova, I. N.: HP-mappings of H-spaces. Ukr. Geom. Sb., Kharkov 27 (1984), 75–82. MR 0767421 | Zbl 0571.58006
[5] Lakomá, L., Jukl, M.: The decomposition of tensor spaces with almost complex structure. Suppl. Rend. Circ. Mat. (Palermo) 72, II (2004), 145–150. MR 2069402 | Zbl 1064.53015
[6] Al Lamy, R. J. K., Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42, 5 (2006), 291–299. MR 2322415
[7] Mikeš, J.: Geodesic mappings onto semisymmetric spaces. Russ. Math. 38, 2 (1994), 35–41, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. 381, 2 (1994), 37–43. MR 1302090
[8] Mikeš, J.: On special F-planar mappings of affine-connected spaces. Vestn. Mosk. Univ. 3 (1994), 18–24. MR 1315721
[9] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 78, 3 (1996), 311–333. DOI 10.1007/BF02365193 | MR 1384327
[10] Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89, 3 (1998), 1334–1353. MR 1619720
[11] Mikeš, J., Chodorová, M.: On concircular and torse-forming vector fields on compact manifolds. Acta Acad. Paedagog. Nyregyházi., Mat.-Inform. Közl. (2010). MR 2754424 | Zbl 1240.53028
[12] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces. Suppl. Rend. Circ. Mat. (Palermo) 69, II (2002), 181–186. MR 1972433 | Zbl 1023.53015
[13] Mikeš, J., Radulović, Ž, Haddad, M.: Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces. Russ. Math. 40, 10 (1996), 28–32, transl. from Izv. Vyssh. Uchebn., Mat 1996, 10(413), 30–35. MR 1447076
[14] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of spaces of affine connection. Sov. Math. 27, 1 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1983, 1(248), 55–61. MR 0694014
[15] Mikeš, J., Starko, G. A.: K-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Circ. Mat. di Palermo, Suppl. Rend. Circ. Mat. (Palermo) 46, II (1997), 123–127. MR 1469028
[16] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations. Palacký Univ. Publ., Olomouc, 2009. MR 2682926 | Zbl 1222.53002
[17] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78. MR 0066024 | Zbl 0057.14101
[18] Petrov, A. Z.: Simulation of physical fields. In: Gravitation and the Theory of Relativity, 4–5, Kazan’ State Univ., Kazan, 1968, 7–21. MR 0285249
[19] Sakaguchi, T.: On the holomorphically projective correspondence between Kählerian spaces preserving complex structure. Hokkaido Math. J. 3 (1974), 203–212. MR 0370411 | Zbl 0305.53024
[20] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979. MR 0552022 | Zbl 0637.53020
[21] Sinyukov, N. S.: Almost geodesic mappings of affinely connected and Riemannian spaces. J. Sov. Math. 25 (1984), 1235–1249. DOI 10.1007/BF01084672
[22] Sobchuk, V. S., Mikeš, J., Pokorná, O.: On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces. Novi Sad J. Math. 29, 3 (1999), 309–312. MR 1771008
[23] Yano, K.: Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, Oxford–London–New York–Paris–Frankfurt, 1965. MR 0187181 | Zbl 0127.12405
[24] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Mathematics Studies 32, Princeton University Press, Princeton, 1953. MR 0062505 | Zbl 0051.39402
Partner of
EuDML logo