[1] Beklemishev, D. V.:
Differential geometry of spaces with almost complex structure. Geometria. Itogi Nauki i Tekhn., All-Union Inst. for Sci. and Techn. Information (VINITI), Akad. Nauk SSSR, Moscow, (1965), 165–212.
MR 0192434
[2] Boeckx, E., Kowalski, O., Vanhecke, L.:
Riemannian manifolds of conullity two. World Sci., 1996.
MR 1462887 |
Zbl 0904.53006
[3] Domashev, V. V., Mikeš, J.:
Theory of holomorphically projective mappings of Kählerian spaces. Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23, 2 (1978), 297–304.
DOI 10.1007/BF01153160 |
MR 0492674
[5] Lakomá, L., Jukl, M.:
The decomposition of tensor spaces with almost complex structure. Suppl. Rend. Circ. Mat. (Palermo) 72, II (2004), 145–150.
MR 2069402 |
Zbl 1064.53015
[6] Al Lamy, R. J. K., Škodová, M., Mikeš, J.:
On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces. Arch. Math. (Brno) 42, 5 (2006), 291–299.
MR 2322415
[7] Mikeš, J.:
Geodesic mappings onto semisymmetric spaces. Russ. Math. 38, 2 (1994), 35–41, transl. from Izv. Vyssh. Uchebn. Zaved., Mat. 381, 2 (1994), 37–43.
MR 1302090
[8] Mikeš, J.:
On special F-planar mappings of affine-connected spaces. Vestn. Mosk. Univ. 3 (1994), 18–24.
MR 1315721
[10] Mikeš, J.:
Holomorphically projective mappings and their generalizations. J. Math. Sci., New York 89, 3 (1998), 1334–1353.
MR 1619720
[11] Mikeš, J., Chodorová, M.:
On concircular and torse-forming vector fields on compact manifolds. Acta Acad. Paedagog. Nyregyházi., Mat.-Inform. Közl. (2010).
MR 2754424 |
Zbl 1240.53028
[12] Mikeš, J., Pokorná, O.:
On holomorphically projective mappings onto Kählerian spaces. Suppl. Rend. Circ. Mat. (Palermo) 69, II (2002), 181–186.
MR 1972433 |
Zbl 1023.53015
[13] Mikeš, J., Radulović, Ž, Haddad, M.:
Geodesic and holomorphically projective mappings of $m$-pseudo- and $m$-quasisymmetric Riemannian spaces. Russ. Math. 40, 10 (1996), 28–32, transl. from Izv. Vyssh. Uchebn., Mat 1996, 10(413), 30–35.
MR 1447076
[14] Mikeš, J., Sinyukov, N. S.:
On quasiplanar mappings of spaces of affine connection. Sov. Math. 27, 1 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1983, 1(248), 55–61.
MR 0694014
[15] Mikeš, J., Starko, G. A.:
K-concircular vector fields and holomorphically projective mappings on Kählerian spaces. Circ. Mat. di Palermo, Suppl. Rend. Circ. Mat. (Palermo) 46, II (1997), 123–127.
MR 1469028
[16] Mikeš, J., Vanžurová, A., Hinterleitner, I.:
Geodesic Mappings and some Generalizations. Palacký Univ. Publ., Olomouc, 2009.
MR 2682926 |
Zbl 1222.53002
[17] Otsuki, T., Tashiro, Y.:
On curves in Kaehlerian spaces. Math. J. Okayama Univ. 4 (1954), 57–78.
MR 0066024 |
Zbl 0057.14101
[18] Petrov, A. Z.:
Simulation of physical fields. In: Gravitation and the Theory of Relativity, 4–5, Kazan’ State Univ., Kazan, 1968, 7–21.
MR 0285249
[19] Sakaguchi, T.:
On the holomorphically projective correspondence between Kählerian spaces preserving complex structure. Hokkaido Math. J. 3 (1974), 203–212.
MR 0370411 |
Zbl 0305.53024
[21] Sinyukov, N. S.:
Almost geodesic mappings of affinely connected and Riemannian spaces. J. Sov. Math. 25 (1984), 1235–1249.
DOI 10.1007/BF01084672
[22] Sobchuk, V. S., Mikeš, J., Pokorná, O.:
On almost geodesic mappings $\pi _2$ between semisymmetric Riemannian spaces. Novi Sad J. Math. 29, 3 (1999), 309–312.
MR 1771008
[23] Yano, K.:
Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, Oxford–London–New York–Paris–Frankfurt, 1965.
MR 0187181 |
Zbl 0127.12405
[24] Yano, K., Bochner, S.:
Curvature and Betti Numbers. Annals of Mathematics Studies 32, Princeton University Press, Princeton, 1953.
MR 0062505 |
Zbl 0051.39402