Previous |  Up |  Next

Article

Keywords:
Boundary-value problems; set-valued map; fixed point; selection
Summary:
We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.
References:
[1] Aftabizadeh, A. R.: Existence and uniqueness theorems for fourth-order boundary value problems. J. Math. Anal. Appl. 116 (1986), 415–426. DOI 10.1016/S0022-247X(86)80006-3 | MR 0842808 | Zbl 0634.34009
[2] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. MR 0947921 | Zbl 0677.54013
[3] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580 Spriger, New York–Berlin–Heidelberg, 1977. DOI 10.1007/BFb0087688 | MR 0467310 | Zbl 0346.46038
[4] Covitz, H., Nadler, S. B. Jr.: Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. DOI 10.1007/BF02771543 | MR 0263062
[5] Frigon, M., Granas, A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. Sci. Paris Ser. I Math. 310 (1990), 819–822. MR 1058503
[6] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis, Vol. I: Theory. Kluwer, Dordrecht, 1997. MR 1485775
[7] Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 13 (1965), 781–786. MR 0196178 | Zbl 0151.10703
[8] Liu, Y.: Multiple positive solutions to fourth-order singular boundary-value problems in abstract spaces. Electron. J. Differential Equations 120 (2004), 1–13. MR 2108891 | Zbl 1076.34068
[9] Martelli, M.: A Rothe’s type theorem for noncompact acyclic-valued map. Boll. Un. Mat. Ital. 11 (1975), 70–76. MR 0394752
[10] Smart, D. R.: Fixed Point Theorems. Cambridge Univ. Press, Cambridge, 1974. MR 0467717 | Zbl 0297.47042
[11] Yang, Y.: Fourth-order two-point boundary value problems. Proc. Amer. Math. Soc. 104 (1988), 175–180. DOI 10.1090/S0002-9939-1988-0958062-3 | MR 0958062 | Zbl 0671.34016
[12] Zhu, Q.: On the solution set of differential inclusions in Banach spaces. J. Differential Equations 93, 2 (1991), 213–237. DOI 10.1016/0022-0396(91)90011-W | MR 1125218
Partner of
EuDML logo