Previous |  Up |  Next

Article

Keywords:
Martin's Axiom; Baire spaces; resolvable spaces; $\omega$-resolvable spaces; almost resolvable spaces; almost-$\omega$-resolvable spaces; infinite $\pi$-network
Summary:
We prove that, assuming MA, every crowded $T_0$ space $X$ is $\omega$-resolvable if it satisfies one of the following properties: (1) it contains a $\pi$-network of cardinality $< \frak{c}$ constituted by infinite sets, (2) $\chi(X) < \frak{c}$, (3) $X$ is a $T_2$ Baire space and $c(X) \leq \aleph_0$ and (4) $X$ is a $T_1$ Baire space and has a network $\Cal{N}$ with cardinality $< \frak{c}$ and such that the collection of the finite elements in it constitutes a $\sigma$-locally finite family. Furthermore, we prove that the existence of a $T_1$ Baire irresolvable space is equivalent to the existence of a $T_1$ Baire $\omega$-irresolvable space, and each of these statements is equivalent to the existence of a $T_1$ almost-$\omega$-irresolvable space. Finally, we prove that the minimum cardinality of a $\pi$-network with infinite elements of a space $\operatorname{Seq}(u_t)$ is strictly greater than $\aleph_0$.
References:
[1] Alas O., Sanchis M., Tkačhenko M.G., Tkachuk V.V., Wilson R.G.: Irresolvable and submaximal spaces: Homogeneity versus $\sigma$discreteness and new ZFC examples. Topology Appl. 107 (2000), 259–273. MR 1779814
[2] Angoa J., Ibarra M., Tamariz-Mascarúa Á.: On $\omega$-resolvable and almost-$\omega$-resolvable spaces. Comment. Math. Univ. Carolin. 49 (2008), 485–508. MR 2490442 | Zbl 1212.54069
[3] Bell M., Kunen K.: On the $\pi$-character of ultrafilters. C.T. Math. Rep. Acad. Sci. Canada 3 (1981), 351–356. MR 0642449 | Zbl 0475.54001
[4] Biernias J., Terepeta M.: A sufficient condition for maximal resolvability of topological spaces. Comment. Math. Univ. Carolin. 41 (2004), 139–144. MR 2076865
[5] Bolstein R.: Sets of points of discontinuity. Proc. Amer. Math. Soc. 38 (1973), 193–197. DOI 10.1090/S0002-9939-1973-0312457-9 | MR 0312457 | Zbl 0232.54014
[6] Comfort W.W., Feng L.: The union of resolvable spaces is resolvable. Math. Japonica 38 (1993), 413–114. MR 1221007 | Zbl 0769.54002
[7] Comfort W.W., García-Ferreira S.: Resolvability: a selective survey and some new results. Topology Appl. 74 (1996), 149–167. DOI 10.1016/S0166-8641(96)00052-1 | MR 1425934
[8] van Douwen E.K.: Applications of maximal topologies. Topology Appl. 51 (1993), 125–139. DOI 10.1016/0166-8641(93)90145-4 | MR 1229708 | Zbl 0845.54028
[9] El'kin A.G.: On the maximal resolvability of products of topological spaces. Soviet Math. Dokl. 10 (1969), 659–662. MR 0248726 | Zbl 0199.57302
[10] El'kin A.G.: Resolvable spaces which are not maximally resolvable. Moscow Univ. Math. Bull. 24 (1969), 116–118. MR 0256331 | Zbl 0183.51204
[11] Feng L.: Strongly exactly $n$-resolvable spaces of arbitrary large dispersion character. Topology Appl. 105 (2000), 31–36. DOI 10.1016/S0166-8641(99)00034-6 | MR 1761084
[12] Foran J., Liebnits P.: A characterization of almost resolvable spaces. Rend. Circ. Mat. Palermo (2) 40 (1991), 136–141. DOI 10.1007/BF02846366 | MR 1119751
[13] Feng L., Masaveu O.: Exactly $n$-resolvable spaces and $\omega$-resolvability. Math. Japonica 50 (1999), 333–339. MR 1727655 | Zbl 0998.54026
[14] Hewitt E.: A problem of set-theoretic topology. Duke Math. J. 10 (1943), 306–333. DOI 10.1215/S0012-7094-43-01029-4 | MR 0008692 | Zbl 0060.39407
[15] Illanes A.: Finite and $\omega$-resolvability. Proc. Amer. Math. Soc. 124 (1996), 1243–1246. DOI 10.1090/S0002-9939-96-03348-5 | MR 1327020 | Zbl 0856.54010
[16] Katětov M.: On topological spaces containing no disjoint dense sets. Mat. Sb. 21 (1947), 3–12. MR 0021679
[17] Kunen K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102, North Holland, sixth impression (1995), Amsterdam, London, New York, Tokyo. MR 0597342
[18] Kunen K., Tall F.: On the consistency of the non-existence of Baire irresolvable spaces. Topology Atlas, http://at.yorku.ca/v/a/a/a/27.htm (1998).
[19] Kunen K., Szymansky A., Tall F.: Baire irresolvable spaces and ideal theory. Ann. Math. Silesiana 2 (14) (1986), 98-107. MR 0861505
[20] Lindgren W.F., Szymanski A.A.: A non-pseudocompact product of countably compact spaces via Seq. Proc. Amer. Math. Soc. 125 (1997), 3741–3746. DOI 10.1090/S0002-9939-97-04013-6 | MR 1415350 | Zbl 0891.54010
[21] Malykhin V.I.: On extremally disconnected topological groups. Soviet Math. Dokl. 16 (1975), 21–25.
[22] Malykhin V.I.: On the resolvability of the product of two spaces and a problem of Katětov. Dokl. Akad. Nauk SSSR 222 (1975), 765–729. Zbl 0325.54017
[23] Malykhin V.I.: Irresolvable countable spaces of weight less than $\frak{c}$. Comment. Math. Univ. Carolin. 40 1 (1999), 181–185. MR 1715211
[24] Pavlov O.: On resolvability of topological spaces. Topology Appl. 126 (2002), 37-47. DOI 10.1016/S0166-8641(02)00004-4 | MR 1934251 | Zbl 1012.54004
[25] Pytke'ev E.G.: On maximally resolvable spaces. Proc. Steklov. Inst. Math. 154 (1984), 225–230.
[26] Tamariz-Mascarúa Á., Villegas-Rodríguez H.: Spaces of continuous functions, box products and almost-$\omega$-resolvable spaces. Comment. Math. Univ. Carolin. 43 4 (2002), 687–705. MR 2045790 | Zbl 1090.54011
[27] Vaughan J.E.: Two spaces homeomorphic to $Seq(p)$. manuscript (). Zbl 1053.54033
[28] Villegas L.M.: On resolvable spaces and groups. Comment. Math. Univ. Carolin. 36 (1995), 579–584. MR 1364498 | Zbl 0837.22001
[29] Villegas L.M.: Maximal resolvability of some topological spaces. Bol. Soc. Mat. Mexicana 5 (1999), 123–136. MR 1692526 | Zbl 0963.22001
Partner of
EuDML logo