Previous |  Up |  Next

Article

Keywords:
semiconcave functions; singularities
Summary:
P. Albano and P. Cannarsa proved in 1999 that, under some applicable conditions, singularities of semiconcave functions in $\mathbb R^n$ propagate along Lipschitz arcs. Further regularity properties of these arcs were proved by P. Cannarsa and Y. Yu in 2009. We prove that, for $n=2$, these arcs are very regular: they can be found in the form (in a suitable Cartesian coordinate system) $\psi(x) = (x, y_1(x)-y_2(x))$, $x\in [0,\alpha]$, where $y_1$, $y_2$ are convex and Lipschitz on $[0,\alpha]$. In other words: singularities propagate along arcs with finite turn.
References:
[1] Albano P., Cannarsa P.: Structural properties of singularities of semiconcave functions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 719–740. MR 1760538 | Zbl 0957.26002
[2] Alexandrov A.D., Reshetnyak Yu.G.: General theory of irregular curves. Mathematics and its Applications (Soviet Series), Vol. 29., Kluwer Academic Publishers, Dordrecht, 1989. DOI 10.1007/978-94-009-2591-5 | MR 1117220 | Zbl 0691.53002
[3] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser, Boston, 2004. MR 2041617 | Zbl 1095.49003
[4] Clarke F.H.: Optimization and nonsmooth analysis. 2nd edition, Classics in Applied Mathematics, 5, SIAM, Philadelphia, 1990. MR 1058436 | Zbl 0696.49002
[5] Cannarsa P., Yu Y.: Singular dynamics for semiconcave functions. J. Eur. Math. Soc. 11 (2009), 999–1024. DOI 10.4171/JEMS/173 | MR 2538498
[6] Duda J.: Curves with finite turn. Czechoslovak Math. J. 58 (133) (2008), 23–49. DOI 10.1007/s10587-008-0003-1 | MR 2402524 | Zbl 1167.46321
[7] Mifflin R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optimization 15 (1977), 959–972. DOI 10.1137/0315061 | MR 0461556 | Zbl 0376.90081
[8] Pavlica D.: On the points of non-differentiability of convex functions. Comment. Math. Univ. Carolin. 45 (2004), 727–734. MR 2103086 | Zbl 1100.26006
[9] Spingarn J.E.: Submonotone subdifferentials of Lipschitz functions. Trans. Amer. Math. Soc. 264 (1981), 77–89. DOI 10.1090/S0002-9947-1981-0597868-8 | MR 0597868 | Zbl 0465.26008
[10] Veselý L., Zajíček L.: Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy Mat.) 289 (1989). MR 1016045
[11] Veselý L., Zajíček L.: On vector functions of bounded convexity. Math. Bohemica 133 (2008), 321–335. MR 2494785
[12] Zajíček L.: On the differentiation of convex functions in finite and infinite dimensional spaces. Czechoslovak Math. J. 29 (1979) 340–348. MR 0536060
Partner of
EuDML logo