Previous |  Up |  Next

Article

Keywords:
variational inclusion; tangent cone; set-valued derivative
Summary:
We establish several variational inclusions for solutions of a nonconvex Sturm-Liouville type differential inclusion on a separable Banach space.
References:
[1] Aubin, J. P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990). MR 1048347 | Zbl 0713.49021
[2] Cernea, A.: A Filippov type existence theorem for a class of second-order differential inclusions. J. Ineq. Pure Appl. Math. 9 (2008), Paper No. 35. MR 2417317 | Zbl 1175.34017
[3] Chang, Y. K., Li, W. T.: Existence results for second order impulsive functional differential inclusions. J. Math. Anal. Appl. 301 (2005), 477-490. DOI 10.1016/j.jmaa.2004.07.041 | MR 2105687 | Zbl 1067.34083
[4] Dunford, N. S., Schwartz, J. T.: Linear Operators Part I. General Theory. Wiley Interscience, New York (1958). MR 1009162
[5] Filippov, A. F.: Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control Optim. 5 (1967), 609-621. DOI 10.1137/0305040 | MR 0220995
[6] Frankowska, H.: A priori estimates for operational differential inclusions. J. Differ. Equations 84 (1990), 100-128. DOI 10.1016/0022-0396(90)90129-D | MR 1042661 | Zbl 0715.49010
[7] Liu, Y., Wu, J., Li, Z.: Impulsive boundary value problems for Sturm-Liouville type differential inclusions. J. Sys. Sci. Complexity 20 (2007), 370-380. DOI 10.1007/s11424-007-9032-3 | MR 2350506
Partner of
EuDML logo