Previous |  Up |  Next

Article

Keywords:
positive solution; nonlinear boundary conditions; third order problem; cone; fixed point index
Summary:
Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear.
References:
[1] Anderson, D. R., Davis, J. M.: Multiple solutions and eigenvalues for third-order right focal boundary value problems. J. Math. Anal. Appl. 267 (2002), 135-157. DOI 10.1006/jmaa.2001.7756 | MR 1886821 | Zbl 1003.34021
[2] Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620-709. DOI 10.1137/1018114 | MR 0415432 | Zbl 0345.47044
[3] Cabada, A., Minhós, F., Santos, A. I.: Solvability for a third order fully discontinuous equation with nonlinear functional boundary conditions. J. Math. Anal. Appl. 322 (2006), 735-748. DOI 10.1016/j.jmaa.2005.09.065 | MR 2250612
[4] Clark, S., Henderson, J.: Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations. Proc. Amer. Math. Soc. 134 (2006), 3363-3372. DOI 10.1090/S0002-9939-06-08368-7 | MR 2231921 | Zbl 1120.34010
[5] Franco, D., O'Regan, D.: Existence of solutions to second order problems with nonlinear boundary conditions. Discrete Contin. Dyn. Syst. suppl. (2005), 273-280. MR 2018125
[6] Graef, J. R., Webb, J. R. L.: Third order boundary value problems with nonlocal boundary conditions. Nonlinear Anal. 71 (2009), 1542-1551. MR 2524369 | Zbl 1189.34034
[7] Graef, J. R., Yang, B.: Positive solutions of a third order nonlocal boundary value problem. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. MR 2375585 | Zbl 1153.34014
[8] Graef, J. R., Henderson, J., Yang, B.: Existence and nonexistence of positive solutions of an $n$-th order nonlocal boundary value problem. Proc. Dynam. Systems Appl. 5 (2008), 186-191. MR 2468138 | Zbl 1203.34026
[9] Guidotti, P., Merino, S.: Gradual loss of positivity and hidden invariant cones in a scalar heat equation. Differ. Int. Equations 13 (2000), 1551-1568. MR 1787081 | Zbl 0983.35013
[10] Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. Academic Press, Boston (1988). MR 0959889 | Zbl 0661.47045
[11] Infante, G.: Positive solutions of some nonlinear BVPs involving singularities and integral BCs. Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 99-106. DOI 10.3934/dcdss.2008.1.99 | MR 2375586
[12] Infante, G.: Positive solutions of differential equations with nonlinear boundary conditions. Discrete Contin. Dyn. Syst. suppl. (2003), 432-438. MR 2018144 | Zbl 1064.34014
[13] Infante, G.: Nonzero solutions of second order problems subject to nonlinear BCs. Dynamic systems and applications. Vol. 5, 222-226, Dynamic, Atlanta, GA (2008). MR 2468144 | Zbl 1203.34030
[14] Infante, G.: Nonlocal boundary value problems with two nonlinear boundary conditions. Commun. Appl. Anal. 12 (2008), 279-288. MR 2499284 | Zbl 1198.34025
[15] Infante, G., Pietramala, P.: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations. Nonlinear Anal. 71 (2009), 1301-1310. DOI 10.1016/j.na.2008.11.095 | MR 2527550 | Zbl 1169.45001
[16] Infante, G., Pietramala, P.: A cantilever equation with nonlinear boundary conditions. Electron. J. Qual. Theory Differ. Equ., Special Edition I (2009), 14 pp. MR 2558840 | Zbl 1201.34041
[17] Infante, G., Webb, J. R. L.: Loss of positivity in a nonlinear scalar heat equation. NoDEA, Nonlinear Differential Equations Appl. 13 (2006), 249-261. DOI 10.1007/s00030-005-0039-y | MR 2243714 | Zbl 1112.34017
[18] Infante, G., Webb, J. R. L.: Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations. Proc. Edinb. Math. Soc. 49 (2006), 637-656. DOI 10.1017/S0013091505000532 | MR 2266153
[19] Kong, L., Wang, J.: Multiple positive solutions for the one-dimensional $p$-Laplacian. Nonlinear Anal. 42 (2000), 1327-1333. DOI 10.1016/S0362-546X(99)00143-1 | MR 1784078 | Zbl 0961.34012
[20] Krasnosel'skiǐ, M. A., Zabreǐko, P. P.: Geometrical Methods of Nonlinear Analysis. Springer, Berlin (1984). MR 0736839
[21] Lan, K. Q.: Multiple positive solutions of semilinear differential equations with singularities. J. London Math. Soc. 63 (2001), 690-704. DOI 10.1112/S002461070100206X | MR 1825983 | Zbl 1032.34019
[22] Minhós, F. M.: On some third order nonlinear boundary value problems: existence, location and multiplicity results. J. Math. Anal. Appl. 339 (2008), 1342-1353. DOI 10.1016/j.jmaa.2007.08.005 | MR 2377091 | Zbl 1144.34009
[23] Palamides, P. K., Infante, G., Pietramala, P.: Nontrivial solutions of a nonlinear heat flow problem via Sperner's Lemma. Appl. Math. Lett. 22 (2009), 1444-1450. DOI 10.1016/j.aml.2009.03.014 | MR 2536830 | Zbl 1173.34311
[24] Palamides, P. K., Palamides, A. P.: A third-order 3-point BVP. Applying Krasnosel'skiǐ's theorem on the plane without a Green's function. Electron. J. Qual. Theory Differ. Equ. (2008), 15 pp. MR 2395531
[25] Palamides, A. P., Smyrlis, G.: Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function. Nonlinear Anal. 68 (2008), 2104-2118. MR 2388769 | Zbl 1153.34016
[26] Wang, Y., Ge, W.: Existence of solutions for a third order differential equation with integral boundary conditions. Comput. Math. Appl. 53 (2007), 144-154. DOI 10.1016/j.camwa.2007.01.002 | MR 2321687 | Zbl 1134.34009
[27] Webb, J. R. L.: Multiple positive solutions of some nonlinear heat flow problems. Discrete Contin. Dyn. Syst. suppl. (2005), 895-903. MR 2192752 | Zbl 1161.34007
[28] Webb, J. R. L.: Optimal constants in a nonlocal boundary value problem. Nonlinear Anal. 63 (2005), 672-685. DOI 10.1016/j.na.2005.02.055 | MR 2188140 | Zbl 1153.34320
[29] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach. J. London Math. Soc. 74 (2006), 673-693. DOI 10.1112/S0024610706023179 | MR 2286439 | Zbl 1115.34028
[30] Webb, J. R. L., Lan, K. Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27 (2006), 91-116. MR 2236412 | Zbl 1146.34020
[31] Yang, B.: Positive solutions of a third-order three-point boundary-value problem. Electron. J. Differ. Equations (2008), 10 pp. MR 2430896 | Zbl 1172.34317
[32] Yang, Z.: Positive solutions of a second-order integral boundary value problem. J. Math. Anal. Appl. 321 (2006), 751-765. DOI 10.1016/j.jmaa.2005.09.002 | MR 2241153 | Zbl 1106.34014
[33] Yao, Q.: Positive solutions of singular third-order three-point boundary value problems. J. Math. Anal. Appl. 354 (2009), 207-212. DOI 10.1016/j.jmaa.2008.12.057 | MR 2510431 | Zbl 1169.34314
Partner of
EuDML logo