Previous |  Up |  Next

Article

Keywords:
mildly $(1,2)^*$-normal space; $(1,2)^*$-${\rm rg}$-closed set; $(1,2)^*$-${\rm rg}$-continuous function; almost $(1,2)^*$-continuous function; almost $(1,2)^*$-${\rm rg}$-closed function
Summary:
The aim of the paper is to introduce and study a new class of spaces called mildly $(1,2)^*$-normal spaces and a new class of functions called $(1,2)^*$-$\mathop{\rm rg}$-continuous, $(1,2)^*$-${\rm R}$-map, almost $(1,2)^*$-continuous function and almost $(1,2)^*$-${\rm rg}$-closed function in bitopological spaces. Subsequently, the relationships between mildly $(1,2)^*$-normal spaces and the new bitopological functions are investigated. Moreover, we obtain characterizations of mildly $(1,2)^*$-normal spaces, properties of the new bitopological functions and preservation theorems for mildly $(1,2)^*$-normal spaces in bitopological spaces.
References:
[1] Arya, S. P., Gupta, R.: On strongly continuous mappings. Kyungpook Math. J. 14 (1974), 131-143. MR 0407795 | Zbl 0328.54006
[2] Arya, S. P., Nour, T.: Characterizations of $s$-normal spaces. Indian J. Pure Appl. Math. 21 (1990), 717-719. MR 1069994 | Zbl 0706.54021
[3] Dontchev, J., Noiri, T.: Quasi-normal spaces and $\pi$g-closed sets. Acta Math. Hungar. 89 (2000), 211-219. DOI 10.1023/A:1010607824929 | MR 1912602 | Zbl 0973.54013
[4] Ekici, E.: On $\gamma$ normal spaces. Bull. Math. Soc. Sci. Math. Roumanie 50 (2007), 259-272. MR 2354467 | Zbl 1150.54023
[5] Naschie, M. S. El: On the uncertainty of Cantorian geometry and two slit experiment. Chaos, Soliton and Fractals 9 (1998), 15-31. MR 1625647
[6] Naschie, M. S. El: Quantum gravity from descriptive set theory. Chaos, Soliton and Fractals 19 (2004), 1339-1344. DOI 10.1016/j.chaos.2003.08.009 | Zbl 1075.83513
[7] Ganster, M., Jafari, S., Navalagi, G. B.: On semi-$g$-regular and semi-$g$-normal spaces. Demonstratio Math. 35 (2002), 415-421. MR 1907314 | Zbl 1026.54013
[8] Khalimsky, E. D.: Applications of connected ordered topological spaces in topology. Conference of Mathematics Department of Povolsia, 1970.
[9] Khalimsky, E. D., Kopperman, R., Meyer, P. R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36 (1990), 1-17. DOI 10.1016/0166-8641(90)90031-V | MR 1062180 | Zbl 0709.54017
[10] Kohli, J. K., Das, A. K.: New normality axioms and decompositions of normality. Glasnik Mat. 37 (2002), 163-173. MR 1918103 | Zbl 1042.54014
[11] Kong, T. Y., Kopperman, R., Meyer, P. R.: A topological approach to digital topology. Am. Math. Month. 98 (1991), 901-917. DOI 10.2307/2324147 | MR 1137537 | Zbl 0761.54036
[12] Kovalevsky, V., Kopperman, R.: Some topology-based image processing algorithms. Ann. NY Acad Sci. 728 (1994), 174-182. DOI 10.1111/j.1749-6632.1994.tb44143.x | MR 1467772 | Zbl 0913.68216
[13] Levine, N.: Generalized closed sets in topology. Rend. Circ. Mat. Palermo 19 (1970), 89-96. DOI 10.1007/BF02843888 | MR 0305341 | Zbl 0231.54001
[14] Maheshwari, S. N., Prasad, R.: On $s$-normal spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 22 (1978), 27-29. MR 0482656 | Zbl 0373.54016
[15] Malghan, S. R.: Generalized closed maps. J. Karnataka Univ. Sci. 27 (1982), 82-88. MR 0773568 | Zbl 0578.54008
[16] Noiri, T.: A note on mildly normal spaces. Kyungpook Math. J. 13 (1973), 225-228. MR 0339074 | Zbl 0283.54011
[17] Noiri, T.: Mildly normal spaces and some functions. Kyungpook Math. J. 36 (1996), 183-190. MR 1396023 | Zbl 0873.54016
[18] Noiri, T.: Super continuity and some strong forms of continuity. Indian J. Pure Appl. Math. 15 (1984), 241-250. MR 0737147 | Zbl 0546.54016
[19] Noiri, T.: On $s$-normal spaces and pre gs-closed functions. Acta Math. Hungar. 80 (1998), 105-113. DOI 10.1023/A:1006576826569 | MR 1624546 | Zbl 0909.54016
[20] Noiri, T.: Semi-normal spaces and some functions. Acta Math. Hungar. 65 (1994), 305-311. DOI 10.1007/BF01875158 | MR 1281440 | Zbl 0858.54019
[21] Palaniappan, N., Rao, K. C.: Regular generalized closed sets. Kyungpook Math. J. 33 (1993), 211-219. MR 1253673 | Zbl 0794.54002
[22] Park, J. K., Park, J. H.: Mildly generalized closed sets, almost normal and mildly normal spaces. Chaos, Solitons and Fractals 20 (2004), 1103-1111. DOI 10.1016/j.chaos.2003.09.025 | MR 2030343 | Zbl 1053.54502
[23] Paul, Bhattacharyya: On p-normal spaces. Soochow J. Math. 21 (1995), 273-289.
[24] Ravi, O., Thivagar, M. L.: On stronger forms of $(1,2)^*$-quotient mappings in bitopological spaces. Internat. J. Math. Game Theory and Algebra 14 (2004), 481-492. MR 2174909 | Zbl 1129.54310
[25] Ravi, O., Thivagar, M. L., Jinli, Jin: Remarks on extensions of $(1,2)^*$-${\rm g}$-closed mappings in bitopological spaces (submitted).
[26] Ravi, O., Thivagar, M. L.: Remarks on $\lambda$-irresolute functions via $(1,2)^*$-sets, (submitted).
[27] Ravi, O., Thivagar, M. L., Ekici, E.: Decompositions of bitopological $(1,2)^*$-continuity and complete $(1,2)^*$-continuity. Analele Universitatii Din Oradea-Fascicola Mathematica 15 (2008), 29-37. MR 2422468 | Zbl 1148.54324
[28] Ravi, O., Kayathri, K., Thivagar, M. L., Israel, M. Joseph: On $(1,2)^*$-sets and weakly generalized $(1,2)^*$-continuous maps in bitopological spaces (submitted).
[29] Singal, M. K., Arya, S. P.: On almost-regular spaces. Glasnik Mat. 4 (1969), 89-99. MR 0243483 | Zbl 0169.24902
[30] Singal, M. K., Singal, A. R.: Almost-continuous mappings. Yokohama Math. J. 16 (1968), 63-73. MR 0261569 | Zbl 0191.20802
[31] Singal, M. K., Singal, A. R.: Mildly normal spaces. Kyungpook Math. J. 13 (1973), 27-31. MR 0362215 | Zbl 0266.54006
[32] Singal, M. K., Arya, S. P.: On almost normal and almost completely regular spaces. Glasnik Mat. 5 (1970), 141-152. MR 0275354
[33] Vigilino, G.: Semi normal and C-compact spaces. Duke J. Math. 38 (1971), 57-61. DOI 10.1215/S0012-7094-71-03808-7
Partner of
EuDML logo