[2] Bade, W. G., Curtis, P. C., Dales, H. G.:
Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. London Math. Soc. 55 (1987), 359-377.
MR 0896225 |
Zbl 0634.46042
[3] Dales, H. G.:
Banach Algebras and Automatic Continuity. London Math. Soc. Monographs Vol. 24, Clarendon Press, Oxford (2000).
MR 1816726 |
Zbl 0981.46043
[4] Dales, H. G., Ghahramani, F., Grønbæk, N.:
Derivations into iterated duals of Banach algebras. Studia Math. 128 (1998), 19-54.
MR 1489459
[5] Dales, H. G., Lau, A. T.-M.:
The second duals of Beurling algebras. Mem. Amer. Math. Soc. 177 (2005).
MR 2155972 |
Zbl 1075.43003
[7] Gronbæk, N.:
Amenability and weak amenability of tensor algebras and algebras of nuclear operators. J. Austral. Math. Soc. (Series A) 51 (1991), 483-488.
DOI 10.1017/S1446788700034649 |
MR 1125449
[8] Gronbæk, N.:
Weak and cyclic amenability for non-commutative Banach algebras. Proc. Edinburgh Math. Soc. 35 (1992), 315-328.
MR 1169250
[9] Helemskii, A. Ya.:
The Homology of Banach and Topological Algebras. Kluwer, Dordrecht (1989).
MR 1093462
[10] Hewitt, E., Ross, K. A.:
Abstract Harmonic Analysis. Vol. I, Springer, Berlin (1963); Vol. II, Springer, Berlin, 1970.
MR 0551496 |
Zbl 0837.43002
[12] Leptin, H.:
Sur l'algèbre de Fourier d'un groupe localement compact. C. R. Acad. Sci. Paris, Sér. A 266 (1968), 1180-1182.
MR 0239002 |
Zbl 0169.46501