Previous |  Up |  Next

Article

Keywords:
double sine series; sum of a double sine series with monotone coefficients
Summary:
In this paper we obtain estimates of the sum of double sine series near the origin, with monotone coefficients tending to zero. In particular (if the coefficients $a_{k,l}$ satisfy certain conditions) the following order equality is proved $$ g(x,y)\sim mna_{m,n}+\frac mn\sum _{l=1}^{n-1}la_{m,l}+\frac nm\sum _{k=1}^{m-1}ka_{k,n}+\frac 1{mn}\sum _{l=1}^{n-1}\sum _{k=1}^{m-1}kla_{k,l}, $$ where $x\in (\frac {\pi }{m+1}, \frac {\pi }m]$, $ y\in (\frac {\pi }{n+1}, \frac {\pi }n]$, $ m, n=1,2,\dots $.
References:
[1] Young, W. H.: On the mode of oscillation of a Fourier series and of its allied series. Proc. London Math. Soc. 12 (1913), 433-452 \JFM 44.0301.02.
[2] Salem, R.: Détermination de l'ordre de grandeur à l'origine de certains séries trigonométriques. C. R. Acad. Sci. Paris 186 (1928), 1804-1806 \JFM 54.0313.01.
[3] Salem, R.: Essais sur les séries trigonométriques. Paris (1940) \JFM 66.1235.02. MR 0002656 | Zbl 0027.20901
[4] Hartman, Ph., Wintner, A.: On sine series with monotone coefficients. J. London Math. Soc. 28 (1953), 102-104. DOI 10.1112/jlms/s1-28.1.102 | MR 0051959 | Zbl 0050.07206
[5] Shogunbekov, Sh. Sh.: Certain estimates for sine series with convex coefficients. Russian Primenenie Funkcional'nogo analiza v teorii priblizhenii, Tver' (1993), 67-72.
[6] Aljančić, S., Bojanić, R., Tomić, M.: Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones. Publ. Inst. Math. Acad. Serie Sci. 10 (1956), 101-120. MR 0082579
[7] Krasniqi, Xh. Z., Braha, N. L.: On the behavior of $r$-th derivative near the origin of sine series with convex coefficients. J. Inequal. Pure Appl. Math. 8 (2007), 1, Paper No. 22 (electronic only), 6 pp., http://jipam.vu.edu.au MR 2295716
[8] Telyakovskiǐ, S. A.: On the behavior near the origin of the sine series with convex coefficients. Publ. Inst. Math. Nouvelle Sér. 58 (1995), 43-50. MR 1396113
[9] Popov, A. Yu.: Estimates of the sums of sine series with monotone coefficients of certain classes. Mathematical Notes 74 (2003), 829-840. DOI 10.1023/B:MATN.0000009019.66625.fb | MR 2054006 | Zbl 1156.42303
[10] Hardy, H. G.: On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters. Quarterly J. Math. 37 (1906), 53-79 (Collected Papers: Vol. IV, pp. 433-459).
[11] Wittaker, E. T., Watson, G. N.: A course of modern analysis I. Nauka Moskva (1963), Russian.
[12] Vukolova, T. M., Dyachenko, M. I.: Bounds for norms of sums of double trigonometric series with multiply monotone coefficients. Russ. Math. (1994), 38 18-26. MR 1317218
[13] Vukolova, T. M., Dyachenko, M. I.: On the properties of sums of trigonometric series with monotone coefficients. Mosc. Univ. Math. Bull. (1995), 50 19-27. MR 1376350 | Zbl 0881.42004
Partner of
EuDML logo