[1] Young, W. H.: On the mode of oscillation of a Fourier series and of its allied series. Proc. London Math. Soc. 12 (1913), 433-452 \JFM 44.0301.02.
[2] Salem, R.: Détermination de l'ordre de grandeur à l'origine de certains séries trigonométriques. C. R. Acad. Sci. Paris 186 (1928), 1804-1806 \JFM 54.0313.01.
[5] Shogunbekov, Sh. Sh.: Certain estimates for sine series with convex coefficients. Russian Primenenie Funkcional'nogo analiza v teorii priblizhenii, Tver' (1993), 67-72.
[6] Aljančić, S., Bojanić, R., Tomić, M.:
Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones. Publ. Inst. Math. Acad. Serie Sci. 10 (1956), 101-120.
MR 0082579
[7] Krasniqi, Xh. Z., Braha, N. L.:
On the behavior of $r$-th derivative near the origin of sine series with convex coefficients. J. Inequal. Pure Appl. Math. 8 (2007), 1, Paper No. 22 (electronic only), 6 pp.,
http://jipam.vu.edu.au MR 2295716
[8] Telyakovskiǐ, S. A.:
On the behavior near the origin of the sine series with convex coefficients. Publ. Inst. Math. Nouvelle Sér. 58 (1995), 43-50.
MR 1396113
[10] Hardy, H. G.: On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters. Quarterly J. Math. 37 (1906), 53-79 (Collected Papers: Vol. IV, pp. 433-459).
[11] Wittaker, E. T., Watson, G. N.: A course of modern analysis I. Nauka Moskva (1963), Russian.
[12] Vukolova, T. M., Dyachenko, M. I.:
Bounds for norms of sums of double trigonometric series with multiply monotone coefficients. Russ. Math. (1994), 38 18-26.
MR 1317218
[13] Vukolova, T. M., Dyachenko, M. I.:
On the properties of sums of trigonometric series with monotone coefficients. Mosc. Univ. Math. Bull. (1995), 50 19-27.
MR 1376350 |
Zbl 0881.42004