Previous |  Up |  Next

Article

Title: Stability processes of moving invariant manifolds in uncertain impulsive differential-difference equations (English)
Author: Stamov, Gani Tr.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 134
Issue: 1
Year: 2009
Pages: 67-76
Summary lang: English
.
Category: math
.
Summary: We present a result on the stability of moving invariant manifolds of nonlinear uncertain impulsive differential-difference equations. The result is obtained by means of piecewise continuous Lyapunov functions and a comparison principle. (English)
Keyword: moving invariant set
Keyword: stability theory
Keyword: uncertain impulsive differential-difference system
MSC: 34A37
MSC: 34K45
idZBL: Zbl 1212.34225
idMR: MR2504689
DOI: 10.21136/MB.2009.140641
.
Date available: 2010-07-20T17:48:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/140641
.
Reference: [1] Bainov, D., Kostadinov, S., Nguyen, Van Min: Dichotomies and Integral Manifolds of Impulsive Differential Equations.SCT Publishing, Singapore (1994).
Reference: [2] Bainov, D., Stamova, I. M.: Vector Lyapunov functions and conditional stability for systems of impulsive differential-difference equations.ANZIAM J. 42 (2001), 341-353. Zbl 0980.93074, MR 1818254, 10.1017/S1446181100011986
Reference: [3] Bainov, D., Dishliev, A. B., Stamova, I. M.: Continuous dependence of solutions of impulsive systems of differential-diference equations on initial data and on parameter.Bol. Soc. Parana. Mat. 18 (1998), 21-34. MR 1769790
Reference: [4] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Stability Analysis of Nonlinear Systems.Marcel Dekker, New York (1989). Zbl 0676.34003, MR 0984861
Reference: [5] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems.World Scientific Publishing, Singapore (1990). Zbl 0753.34037, MR 1089428
Reference: [6] Lakshmikantham, V., Vatsala, S. A.: Stability of moving invariant sets.Advances in Nonlinear Dynamics. Langhorne, PA: Cordon and Breach. Stab. Control Theory Methods Appl. {\it 5} (1997), 79-83 Sivasundaram, S. Zbl 0947.34039, MR 1479421
Reference: [7] Shendge, G. R.: A new approach to the stability theory of functional differential equations.J. Math. Anal. Appl. 95 (1983), 319-334. MR 0716086, 10.1016/0022-247X(83)90110-5
Reference: [8] Siljak, D. D., Ikeda, M., Ohta, Y.: Parametic stability.Proccedings Universita di Genova-Ohio State University Joint Conference: Birkhauser (1991), 1-20. MR 1125087
Reference: [9] Stamov, G.: Stability of moving invariant maniolds for impulsive differential equations.J. Tech. Univ. Plovdiv Fundam. Sci. Appl., Ser. A Pure Appl. Math. 7 (1999), 99-107. MR 1834207
Reference: [10] Stamov, G.: Stability of moving conditionally manifolds for impulsive differential equations.Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), 99-107. MR 2067833
Reference: [11] Stamov, G.: Impulsive integro-differential equations and stability of moving invariant maniolds.Methods Appl. Anal. 14 (2007), 69-76. MR 2392627
Reference: [12] Stamova, I., Stamov, G.: Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics.J. Comput. Appl. Math. 130 (2001), 163-171. Zbl 1022.34070, MR 1827978, 10.1016/S0377-0427(99)00385-4
Reference: [13] Vatsala, A. S., Deo, G. S.: Stability of moving invariant sets for functional differential systems.Int. J. Nonlin. Diff. Eq.: Theory, Methods and Appl. 3 (1997), 179-186.
.

Files

Files Size Format View
MathBohem_134-2009-1_7.pdf 245.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo