Previous |  Up |  Next

Article

Keywords:
quadratic integral equation; monotonic solutions; Abel; measure of noncompactness; Darbo's fixed point theorem
Summary:
We present an existence theorem for monotonic solutions of a quadratic integral equation of Abel type in $C[0,1]$. The famous Chandrasekhar's integral equation is considered as a special case. The concept of measure of noncompactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof.
References:
[1] Appell, J., Zabrejko, P. P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics, vol. 95, Cambridge University Press (1990). MR 1066204 | Zbl 0701.47041
[2] Argyros, I. K.: Quadratic equations and applications to Chandrasekhar's and related equations. Bull. Aust. Math. Soc. 32 (1985), 275-292. DOI 10.1017/S0004972700009953 | MR 0815369 | Zbl 0607.47063
[3] Dugundji, J., Granas, A.: Fixed Point Theory. Monografie Matematyczne, PWN, Warsaw (1982). MR 0660439 | Zbl 0483.47038
[4] Banaś, J., Rzepka, B.: Monotonic solutions of a quadratic integral equation of fractional order. J. Math. Anal. Appl. 332 (2007), 1370-1378. DOI 10.1016/j.jmaa.2006.11.008 | MR 2324344 | Zbl 1123.45001
[5] Banaś, J., Caballero, J., Rocha, J., Sadarangani, K.: Monotonic solutions of a class of quadratic integral equations of Volterra type. Comput. Math. Appl. 49 (2005), 943-952. DOI 10.1016/j.camwa.2003.11.001 | MR 2135225 | Zbl 1083.45002
[6] Banaś, J., Martinon, A.: Monotonic solutions of a quadratic integral equation of Volterra type. Comput. Math. Appl. 47 (2004), 271-279. DOI 10.1016/S0898-1221(04)90024-7 | MR 2047943 | Zbl 1059.45002
[7] Banaś, J., Olszowy, L.: Measures of noncompactness related to monotonicity. Comment. Math. 41 (2001), 13-23. MR 1876707 | Zbl 0999.47041
[8] Banaś, J., Lecko, M., El-Sayed, W. G.: Existence theorems of some quadratic integral equations. J. Math. Anal. Appl. 222 (1998), 276-285. DOI 10.1006/jmaa.1998.5941 | MR 1623923
[9] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York (1980). MR 0591679
[10] Caballero, J., López, B., Sadarangani, K.: On monotonic solutions of an integral equation of Volterra type with supremum. J. Math. Anal. Appl. 305 (2005), 304-315. DOI 10.1016/j.jmaa.2004.11.054 | MR 2128130 | Zbl 1076.45002
[11] Caballero, J., Rocha, J., Sadarangani, K.: On monotonic solutions of an integral equation of Volterra type. J. Comput. Appl. Math. 174 (2005), 119-133. DOI 10.1016/j.cam.2004.04.003 | MR 2102652 | Zbl 1063.45003
[12] Chandrasekhar, S.: Radiative Transfer. Oxford University Press, London (1950). MR 0042603 | Zbl 0037.43201
[13] Darwish, M. A.: On monotonic solutions of a singular quadratic integral equation with supremum. (to appear) in Dynam. Syst. Appl. MR 2569518
[14] Darwish, M. A.: On solvability of some quadratic functional-integral equation in Banach algebra. Commun. Appl. Anal. 11 (2007), 441-450. MR 2368195 | Zbl 1137.45004
[15] Darwish, M. A.: On global attractivity of solutions of a functional-integral equation. Electron. J. Qual. Theory Differ. Equ. 21 (2007), 1-10. DOI 10.14232/ejqtde.2007.1.21 | MR 2346354 | Zbl 1178.45005
[16] Darwish, M. A.: On quadratic integral equation of fractional orders. J. Math. Anal. Appl. 311 (2005), 112-119. DOI 10.1016/j.jmaa.2005.02.012 | MR 2165466 | Zbl 1080.45004
[17] El-Sayed, W. G., Rzepka, B.: Nondecreasing solutions of a quadratic integral equation of Urysohn type. Comput. Math. Appl. 51 (2006), 1065-1074. DOI 10.1016/j.camwa.2005.08.033 | MR 2228900 | Zbl 1134.45004
[18] Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Lect. Notes Math., vol. 1461 (1991). MR 1095269 | Zbl 0717.45002
[19] Hu, S., Khavani, M., Zhuang, W.: Integral equations arising in the kinetic theory of gases. Appl. Analysis 34 (1989), 261-266. DOI 10.1080/00036818908839899 | MR 1387174
[20] Leggett, R. W.: A new approach to the H-equation of Chandrasekhar. SIAM J. Math. 7 (1976), 542-550. DOI 10.1137/0507044 | MR 0417708 | Zbl 0331.45012
[21] Stuart, C. A.: Existence theorems for a class of nonlinear integral equations. Math. Z. 137 (1974), 49-66. DOI 10.1007/BF01213934 | MR 0348416
Partner of
EuDML logo