[1] Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C.:
Cancelative residuated lattices. Algebra Univers. 50 (2003), 83-106.
MR 2026830
[5] Cignoli, R., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundation of Many-Valued Reasoning. Kluwer, Dordrecht (2000).
[6] Nola, A. Di, Georgescu, G., Iorgulescu, A.:
Pseudo-BL algebras I. Multiple Val. Logic 8 (2002), 673-714.
MR 1948853 |
Zbl 1028.06007
[8] Dvurečenskij, A., Rachůnek, J.:
On Riečan and Bosbach states for bounded Rl-monoids. Math. Slovaca 56 (2006), 487-500.
MR 2293582
[9] Font, J. M., Rodriguez, A. J., Torrens, A.:
Wajsberg algebras. Stochastica 8 (1984), 5-31.
MR 0780136 |
Zbl 0557.03040
[11] Georgescu, G., Iorgulescu, A.:
Pseudo-$\rm MV$ algebras. Multiple Val. Logic 6 (2001), 95-135.
MR 1817439
[13] Hájek, P.: Basic fuzzy logic and BL-algebras. Soft. Comput. 2 (1998), 124-128.
[14] Hájek, P.:
Observations on non-commutative fuzzy logic. Soft. Comput. 8 (2003), 39-43.
Zbl 1075.03009
[15] Harlenderová, M., Rachůnek, J.:
Modal operators on $\rm MV$-algebras. Math. Bohem. 131 (2006), 39-48.
MR 2211002
[16] Kovář, T.: A general theory of dually residuated lattice ordered monoids. PhD Thesis, Palacký University, Olomouc (1996).
[17] Kühr, J.:
Dually residuated lattice-ordered monoids. PhD Thesis, Palacký University, Olomouc (2003).
MR 2070377 |
Zbl 1066.06008
[18] Kühr, J.:
Pseudo $\rm BL$-algebras and DRl-monoids. Math. Bohem. 128 (2003), 199-208.
MR 1995573
[21] Rachůnek, J.:
A duality between algebras of basic logic and bounded representable DRl-monoids. Math. Bohem. 26 (2001), 561-569.
MR 1970259
[23] Rachůnek, J., Šalounová, D.:
Modal operators on bounded commutative residuated l-monoids. (to appear) in Math. Slovaca.
MR 2357828
[24] Rachůnek, J., Šalounová, D.:
A generalization of local fuzzy structures. Soft. Comput. 11 (2007), 565-571.
Zbl 1121.06013
[25] Rachůnek, J., Slezák, V.:
Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures. Math. Slovaca 56 (2006), 223-233.
MR 2229343 |
Zbl 1150.06015