Previous |  Up |  Next

Article

Keywords:
Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space
Summary:
Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,{\cal O}), \ldots , H^{n-1}(X,{\cal O})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). \endgraf This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.
References:
[1] Alessandrini, L.: On the cohomology of a holomorphically separable complex analytic space. Bolletino U.M.I. 1-A (1982), 261-208. MR 0663290 | Zbl 0491.32005
[2] Bănică, C., Stănaşilă, O.: Sur les ouverts de Stein dans un espace complexe. C.R. Acad. Sci. Paris Sér. A--B 268 (1969), 1024-1027. MR 0243114
[3] Coen, S.: Annulation de la cohomologie à valeur dans le faisceau structural et espaces de Stein. Compositio Math. 37 (1978), 63-75. MR 0499295
[4] Fornæss, J.-E., Narasimhan, R.: The Levi problem on complex spaces with singularities. Math. Ann. 248 (1980), 47-72. DOI 10.1007/BF01349254 | MR 0569410
[5] Forster, O.: Some remarks on parallelizable Stein manifolds. Bull. Amer. Math. Soc. 73 (1967), 712-716. DOI 10.1090/S0002-9904-1967-11839-1 | MR 0218619 | Zbl 0163.32102
[6] Grauert, H.: Characterisierung der holomorph-vollständigen komplexen Räume. Math. Ann. 129 (1955), 233-259. DOI 10.1007/BF01362369 | MR 0071084
[7] Gunning, R.-C., Narasimhan, R.: Immersion of open Riemann surfaces. Math. Ann. 174 (1967), 103-108. DOI 10.1007/BF01360812 | MR 0223560 | Zbl 0179.11402
[8] Gunning, R.-C., Rossi, H.: Analytic functions of several complex variables. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1965). MR 0180696 | Zbl 0141.08601
[9] Gunning, R.-C.: Introduction to Holomorphic Functions of Several Variables, vol. III. Wadsworth & Brokes (1990). MR 1059457
[10] Kaup, B., Kaup, L.: Holomorphic functions of several variables. An introduction to the fundamental theory. With the assistance of Gottfried Barthel. Translated from the German by Michael Bridgland, de Gruyter Studies in Mathematics, 3, Berlin (1983). MR 0716497 | Zbl 0528.32001
[11] Khue, N. V.: Stein morphisms and Riemann domains over Stein spaces. Acta Math. Vietnam. 10 (1985), 75-92. MR 0842758
[12] Laufer, H.: On sheaf cohomology and envelopes of holomorphy. Ann. Math. 84 (1966), 102-118. DOI 10.2307/1970533 | MR 0209520 | Zbl 0143.30201
[13] Narasimhan, R.: The Levi problem for complex spaces II. Math. Ann. 146 (1962), 195-216. DOI 10.1007/BF01470950 | MR 0182747 | Zbl 0131.30801
[14] Narasimhan, R.: Complex analysis in one variable. Birkhäuser (1985). MR 0781130 | Zbl 0561.30001
[15] Scheja, G.: Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung. Math. Ann. 157 (1964), 75-94. DOI 10.1007/BF01362668 | MR 0176466 | Zbl 0136.20704
[16] Serre, J.-P.: Quelques problèmes globaux relatifs aux variétés de Stein. Colloque sur les fonctions de plusieurs variables, tenu à Bruxelles (1953), 57-68 Georges Thone, Lige; Masson & Cie, Paris. MR 0064155 | Zbl 0053.05302
[17] Simha, R. R.: On Siu's characterisation of domains of holomorphy. J. Indian Math. Soc. 42 (1978), 1-4, 127-130. MR 0558988 | Zbl 0493.32012
[18] Siu, Y.-T.: Non-countable dimensions of cohomology groups of analytic sheaves and domains of holomorphy. Math. Z. 102 (1967), 17-29. DOI 10.1007/BF01110282 | MR 0222342 | Zbl 0167.06802
[19] Siu, Y.-T.: Analytic sheaf cohomology groups of dimension $n$ of $n$-dimensional complex spaces. Trans. Amer. Math. Soc. 143 (1969), 77-94. MR 0252684 | Zbl 0186.40404
[20] Siu, Y.-T.: Every Stein subvariety admits a Stein neighborhood. Invent. Math. 38 (1976), 89-100. DOI 10.1007/BF01390170 | MR 0435447 | Zbl 0343.32014
[21] Siu, Y.-T., Trautmann, G.: Gap sheaves and extension of coherent analytic subsheaves. Lect. Notes in Math., vol. 172, Springer-Verlag, Berlin (1976). MR 0287033
[22] Vâjâitu, V.: A characterization of $1$-convexity. J. Math. Pures Appl. 84 (2005), 179-197. DOI 10.1016/j.matpur.2004.09.001 | MR 2118838
[23] Wiegmann, K.-W.: Über Quotienten holomorph-konvexer Räume. Math. Z. 97 (1967), 251-258. DOI 10.1007/BF01112168 | MR 0214813
Partner of
EuDML logo