Previous |  Up |  Next

Article

Keywords:
generalized Jordan derivation; generalized derivation; Hochschild 2-cocycle; triangular algebra
Summary:
In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk.\ J.\ Math.\ 30 (2006), 403--411). We show that if $\mathcal U$ is a triangular algebra, then every generalized Jordan derivation of above type from $\mathcal U$ into itself is a generalized derivation.
References:
[1] Benkovič, D., Eremita, D.: Commuting traces and commutativity preserving maps on triangular algebras. J. Algebra 280 (2004), 797-824. DOI 10.1016/j.jalgebra.2004.06.019 | MR 2090065
[2] Benkovič, D.: Jordan derivations and antiderivations on triangular matrices. Linear Algebra Appl. 397 (2005), 235-244. MR 2116460
[3] Brešar, M.: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1103-1106. DOI 10.1090/S0002-9939-1988-0929422-1 | MR 0929422
[4] Davidson, K.: Nest Algebras. Pitman Research Notes in Math. 191, Longman, London (1988). MR 0972978 | Zbl 0669.47024
[5] Hou, J. C., Qi, X. F.: Generalized Jordan derivation on nest algebras. Linear Algebra Appl. 430 (2009), 1479-1485. MR 2490690 | Zbl 1155.47059
[6] Herstein, I. N.: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1958), 1104-1110. DOI 10.1090/S0002-9939-1957-0095864-2 | MR 0095864 | Zbl 0216.07202
[7] Lu, F. Y.: The Jordan structure of CSL algebras. Stud. Math. 190 (2009), 283-299. DOI 10.4064/sm190-3-3 | MR 2572431 | Zbl 1156.47058
[8] Nakajima, A.: Note on generalized Jordan derivation associate with Hochschild 2-cocycles of rings. Turk. J. Math. 30 (2006), 403-411. MR 2270836
[9] Zhang, J. H.: Jordan derivations of nest algebras. Acta Math. Sinica 41 (1998), 205-212. MR 1612539
[10] Zhang, J. H., Yu, W.: Jordan derivations of triangular algebras. Linear Algebra Appl. 419 (2006), 251-255. DOI 10.1016/j.laa.2006.04.015 | MR 2263119 | Zbl 1103.47026
Partner of
EuDML logo