Previous |  Up |  Next

Article

Keywords:
infinite matrices; Schur multipliers; discrete Sawyer duality principle; Bennett factorization; Wiener algebra and Hardy type inequalities
Summary:
Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\{x_k\}_{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1<p<\infty $, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.
References:
[1] Bennett, G.: Factorizing the Classical Inequalities. Memoirs of the American Mathematical Society, Number 576 (1996). MR 1317938 | Zbl 0857.26009
[2] Bennett, G.: Schur multipliers. Duke Math. J. 44 (1977), 603-639. MR 0493490 | Zbl 0389.47015
[3] Barza, S., Kravvaritis, D., Popa, N.: Matriceal Lebesgue spaces and Hölder inequality. J. Funct. Spaces Appl. 3 (2005), 239-249. DOI 10.1155/2005/376150 | MR 2163625 | Zbl 1093.42002
[4] Badea, C., Paulsen, V.: Schur multipliers and operator-valued Foguel-Hankel operators. Indiana Univ. Math. J. 50 (2001), 1509-1522. DOI 10.1512/iumj.2001.50.2121 | MR 1888651 | Zbl 1031.47019
[5] Barza, S., Persson, L. E., Popa, N.: A Matriceal Analogue of Fejer's theory. Math. Nach. 260 (2003), 14-20. DOI 10.1002/mana.200310100 | MR 2017699 | Zbl 1043.15020
[6] Barza, S., Lie, V. D., Popa, N.: Approximation of infinite matrices by matriceal Haar polynomials. Ark. Mat. 43 (2005), 251-269. DOI 10.1007/BF02384779 | MR 2173951
[7] Carro, M. J., Soria, J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112 (1993), 480-494. DOI 10.1006/jfan.1993.1042 | MR 1213148 | Zbl 0784.46022
[8] Carro, M. J., Raposo, J. A., Soria, J.: Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities. Memoirs of the American Mathematical Society, Number 877 (2007). MR 2308059 | Zbl 1126.42005
[9] Jagers, A. A.: A note on Cesaro sequence spaces. Nieuw Arch. voor Wiskunde 3 (1974), 113-124. MR 0348444 | Zbl 0286.46017
[10] Kufner, A., Persson, L. E.: Weighted Inequalities of Hardy Type. World Scientific Publishing Co., Singapore-New Jersey-London-Hong Kong (2003). MR 1982932 | Zbl 1065.26018
[11] Kufner, A., Maligranda, L., Persson, L. E.: The Hardy Inequality. About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen (2007). MR 2351524
[12] Kwapien, S., Pelczynski, A.: The main triangle projection in matrix spaces and its applications. Studia Math. 34 (1970), 43-68. DOI 10.4064/sm-34-1-43-67 | MR 0270118 | Zbl 0189.43505
[13] Marcoci, A., Marcoci, L.: A new class of linear operators on $\ell^2$ and Schur multipliers for them. J. Funct. Spaces Appl. 5 (2007), 151-164. DOI 10.1155/2007/949161 | MR 2319600
[14] Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge studies in advanced mathematics 78, Cambridge University Press (2002). MR 1976867 | Zbl 1029.47003
[15] Pommerenke, Chr.: Univalent Functions. Hubert, Gottingen (1975). MR 0507768 | Zbl 0298.30014
[16] Sawyer, E.: Boundedness of classical operators on classical Lorentz spaces. Studia Math. 96 (1990), 145-158. DOI 10.4064/sm-96-2-145-158 | MR 1052631 | Zbl 0705.42014
[17] Schur, J.: Bemerkungen zur Theorie der beschr$\ddot a$nkten Bilinearformen mit unendlich vielen Verandlichen. J. Reine Angew. Math. 140 (1911), 1-28 \JFM 42.0367.01. DOI 10.1515/crll.1911.140.1
[18] Shapiro, H. S., Shields, A. L.: On some interpolation problems for analytic functions. Amer. J. Math. 83 (1961), 513-532. DOI 10.2307/2372892 | MR 0133446 | Zbl 0112.29701
[19] Shapiro, H. S., Shields, A. L.: On the zeros of functions with finite Dirichlet integral and some related function spaces. Math. Zeit. 80 (1962), 217-229. DOI 10.1007/BF01162379 | MR 0145082 | Zbl 0115.06301
[20] Styan, G. P. H.: Hadamard products and multivariate statistical analysis. Linear Algebra 6 (1973), 217-240. DOI 10.1016/0024-3795(73)90023-2 | MR 0318177
[21] Shields, A. L., Wallen, J. L.: The commutants of certain Hilbert space operators. Indiana Univ. Math. J. 20 (1971), 777-799. DOI 10.1512/iumj.1971.20.20062 | MR 0287352 | Zbl 0207.13801
Partner of
EuDML logo