Previous |  Up |  Next

Article

Keywords:
multiplicity results; Lidstone boundary value problem; eigenvalues; bifurcation methods; positive solutions
Summary:
We consider boundary value problems for nonlinear $2m$th-order eigenvalue problem $$ \begin{aligned} (-1)^mu^{(2m)}(t)&=\lambda a(t)f(u(t)),\ \ \ \ \ 0<t<1, \\ u^{(2i)}(0)&=u^{(2i)}(1)=0,\ \ \ \ i=0,1,2,\cdots ,m-1 . \end{aligned} $$ where $a\in C([0,1], [0,\infty ))$ and $a(t_0)>0$ for some $t_0\in [0,1]$, $f\in C([0,\infty ),[0,\infty ))$ and $f(s)>0$ for $s>0$, and $f_0=\infty $, where $f_0=\lim _{s\rightarrow 0^+}f(s)/s$. We investigate the global structure of positive solutions by using Rabinowitz's global bifurcation theorem.
References:
[1] Gupta, C. P.: Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 26 (1988), 289-304. DOI 10.1080/00036818808839715 | MR 0922976 | Zbl 0611.34015
[2] Agarwal, R. P.: Boundary Value Problems for Higher Order Differential Equations. World Scientific, Singapore (1986). MR 1021979 | Zbl 0619.34019
[3] Agarwal, R. P., Wong, P. J. Y.: Lidstone polynomials and boundary value problems. Comput. Math. Appl. 17 (1989), 1397-1421. DOI 10.1016/0898-1221(89)90023-0 | MR 0992124 | Zbl 0682.65049
[4] Yang, Y. S.: Fourth-order two-point boundary value problems. Proc. Amer. Math. Soc. 104 (1988), 175-180. DOI 10.1090/S0002-9939-1988-0958062-3 | MR 0958062 | Zbl 0671.34016
[5] Pino, M. A. Del, Manásevich, R. F.: Multiple solutions for the $p$-Laplacian under global nonresonance. Proc. Amer. Math. Soc. 112 (1991), 131-138. MR 1045589
[6] Ma, R., Wang, H.: On the existence of positive solutions of fourth-order ordinary differential equations. Appl. Anal. 59 (1995), 225-231. DOI 10.1080/00036819508840401 | MR 1378037 | Zbl 0841.34019
[7] Ma, R., Zhang, J., Fu, S.: The method of lower and upper solutions for fourth-order two-point boundary value problems. J. Math. Anal. Appl. 215 (1997), 415-422. DOI 10.1006/jmaa.1997.5639 | MR 1490759 | Zbl 0892.34009
[8] Bai, Z., Wang, H.: On positive solutions of some nonlinear fourth-order beam equations. J. Math. Anal. Appl. 270 (2002), 357-368. DOI 10.1016/S0022-247X(02)00071-9 | MR 1915704 | Zbl 1006.34023
[9] Bai, Z., Ge, W.: Solutions of $2n$th Lidstone boundary value problems and dependence on higher order derivatives. J. Math. Anal. Appl. 279 (2003), 442-450. DOI 10.1016/S0022-247X(03)00011-8 | MR 1974036
[10] Yao, Q.: On the positive solutions of Lidstone boundary value problems. Applied Mathematics and Computation 137 (2003), 477-485. DOI 10.1016/S0096-3003(02)00152-2 | MR 1950111 | Zbl 1093.34515
[11] Li, Y.: Abstract existence theorems of positive solutions for nonlinear boundary value problems. Nonlinear Anal. TMA 57 (2004), 211-227. MR 2056428 | Zbl 1064.47058
[12] Li, F., Li, Y., Liang, Z.: Existence and multiplicity of solutions to $2m$th-order ordinary differential equations. J. Math. Anal. Appl. 331 (2007), 958-977. DOI 10.1016/j.jmaa.2006.09.025 | MR 2313694 | Zbl 1119.34014
[13] Rynne, B. P.: Global bifurcation for $2m$th-order boundary value problems and infinitely many solutions of superlinear problems. J. Differential Equations 188 (2003), 461-472. DOI 10.1016/S0022-0396(02)00146-8 | MR 1954290
[14] Rynne, B. P.: Solution curves of $2m$th order boundary value problems. Electron. J. Differential Equations 32 (2004), 1-16. MR 2036216 | Zbl 1060.34011
[15] Bari, R., Rynne, B. P.: Solution curves and exact multiplicity results for $2m$th order boundary value problems. J. Math. Anal. Appl. 292 (2004), 17-22. DOI 10.1016/j.jmaa.2003.08.043 | MR 2050212
[16] Ma, R.: Existence of positive solutions of a fourth-order boundary value problem. Appl. Math. Comput. 168 (2005), 1219-1231. DOI 10.1016/j.amc.2004.10.014 | MR 2171774 | Zbl 1082.34023
[17] Ma, R.: Nodal solutions of boundary value problems of fourth-order ordinary differential equations. J. Math. Anal. Appl. 319 (2006), 424-434. DOI 10.1016/j.jmaa.2005.06.045 | MR 2227914 | Zbl 1098.34012
[18] Ma, R.: Nodal solutions for a fourth-order two-point boundary value problem. J. Math. Anal. Appl. 314 (2006), 254-265. DOI 10.1016/j.jmaa.2005.03.078 | MR 2183550 | Zbl 1085.34015
[19] Elias, U.: Eigenvalue problems for the equation $Ly + \lambda p(x)y = 0$. J. Diff. Equations, 29 (1978), 28-57. DOI 10.1016/0022-0396(78)90039-6 | MR 0486759 | Zbl 0369.34008
[20] Whyburn, G. T.: Topological Analysis. Princeton University Press, Princeton (1958). MR 0099642 | Zbl 0080.15903
[21] Xu, J., Han, X.: Existence of nodal solutions for Lidstone eigenvalue problems. Nonlinear Analysis TMA 67 (2007), 3350-3356. DOI 10.1016/j.na.2006.10.017 | MR 2350891 | Zbl 1136.34016
[22] Rabinowitz, P.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7 (1971), 487-513. DOI 10.1016/0022-1236(71)90030-9 | MR 0301587 | Zbl 0212.16504
Partner of
EuDML logo