Article
Keywords:
eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern
Summary:
The inertia of an $n$ by $n$ symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order $n$. In this note we classify all the maximal inertias for symmetric sign patterns of order $n$, and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.
References:
[1] Cavers, M. S., Meulen, K. N. Vander:
Spectrally and inertially arbitrary sign patterns. Linear Algebra Appl. 394 (2005), 53-72.
MR 2100576
[4] Horn, R. A., Johnson, C. R.:
Matrix Analysis. Cambridge Univeristy Press Cambridge (1985).
MR 0832183 |
Zbl 0576.15001
[5] Hall, F. J., Li, Z.:
Inertia sets of symmetric sign pattern matrices. Numer. Math., J. Chin. Univ. (English Ser.) 10 (2001), 226-240.
MR 1884971 |
Zbl 0997.15010
[6] Hall, F. J., Li, Z., Wang, Di:
Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338 (2001), 153-169.
MR 1861120 |
Zbl 0994.15028
[7] Hall, F. J., Li, Z., Wang, Di:
Symmetric sign pattern matrices that require unique inertia. Linear Algebra Appl. 338 (2001), 153-169.
MR 1861120 |
Zbl 0994.15028