Previous |  Up |  Next

Article

Keywords:
almost $f$-algebra orthosymmetric bimorphism
Summary:
Let $A$ and $B$ be two Archimedean vector lattices and let $( A^{\prime }) _n'$ and $( B') _n'$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^{\ast \ast \ast }\colon ( A') _n'\times ( A') _n'\rightarrow ( B') _n'$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras.
References:
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Academic Press. Orlando (1985). MR 0809372 | Zbl 0608.47039
[2] Arens, R.: The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2 (1951), 839-848. DOI 10.1090/S0002-9939-1951-0045941-1 | MR 0045941 | Zbl 0044.32601
[3] Basly, M., Triki, A.: ${ff}$-algèbres réticulées. Preprint, Tunis (1988). MR 0964828
[4] Bernau, S. J., Huijsmans, C. B.: The order bidual of almost $f$-algebras and $d$-algebras. Trans. Amer. Math. Soc. 347 (1995), 4259-4275. MR 1308002 | Zbl 0851.46003
[5] Bernau, S. J., Huijsmans, C. B.: Almost $f$-algebras and $d$-algebras. Math. Proc. Cam. Phil. Soc. 107 (1990), 287-308. DOI 10.1017/S0305004100068560 | MR 1027782 | Zbl 0707.06009
[6] Buskes, G., Rooij, A. Van: Almost $f$-algebras: Structure and the Dedekind completion. Positivity 3 (2000), 233-243. DOI 10.1023/A:1009874426887 | MR 1797126
[7] Buskes, G., Rooij, A. Van: Almost $f$-algebras: commutativity and Cauchy Schwartz inequality. Positivity 3 (2000), 227-131. DOI 10.1023/A:1009826510957 | MR 1797125
[8] Grobler, J. J.: Commutativity of the Arens product in lattice ordered algebras. Positivity 3 (1999), 357-364. DOI 10.1023/A:1009880911903 | MR 1721545 | Zbl 0945.46003
[9] Huijsmans, C. B.: Lattice-ordered Algebras and $f$-algebras: A survey in Studies in Economic Theory 2. Springer Verlag, Berlin-Heidelberg-New York (1990), 151-169. MR 1307423
[10] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces I. North-Holland. Amsterdam (1971).
[11] Meyer-Nieberg, P.: Banach Lattices. Springer-Verlag, Berlin Heidelberg New York (1991). MR 1128093 | Zbl 0743.46015
[12] Schaefer, H. H.: Banach Lattices and Positive Operators. Grundlehren. Math. Wiss. Vol. 215, Springer, Berlin (1974). MR 0423039 | Zbl 0296.47023
[13] Scheffold, E.: ${ff}$-Banachverbandsalgebren. Math. Z. 177 (1981), 183-205. MR 0612873 | Zbl 0439.46037
[14] Triki, A.: On algebra homomorphism in complex $f$-algebras. Comment. Math. Univ. Carolin. 43 (2002), 23-31. MR 1903304
[15] Zaanen, A. C.: Riesz spaces II. North-Holland, Amsterdam (1983). MR 0704021 | Zbl 0519.46001
Partner of
EuDML logo