Previous |  Up |  Next

Article

Keywords:
conditional expectation; multipliers; multiplication operators; Fredholm operator
Summary:
In this paper Lambert multipliers acting between $L^p$ spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.
References:
[1] Campbell, J., Jamison, J.: On some classes of weighted composition operators. Glasg. Math. J. 32 (1990), 87-94. DOI 10.1017/S0017089500009095 | MR 1045089 | Zbl 0712.47025
[2] Conway, J. B.: A course in Functional Analysis, 2nd ed. Springer-Verlag New York (1990). MR 1070713 | Zbl 0706.46003
[3] Pagter, B. de, Ricker, W. J.: Bicommutants of algebras of multiplication operators. Proc. London Math. Soc. 72 (1996), 458-480. MR 1367086 | Zbl 0910.47037
[4] Herron, J.: Weighted conditional expectation operators on $L^p$ spaces. UNC Charlotte Doctoral Dissertation ().
[5] Kantorovitz, S.: Introduction to Modern Analysis. Oxford University Press Oxford (2003). MR 1977370 | Zbl 1014.46001
[6] Lambert, A., Lucas, T. G.: Nagata's principle of idealization in relation to module homomorphisms and conditional expectations. Kyungpook Math. J. 40 (2000), 327-337. MR 1803109 | Zbl 1042.13006
[7] Lambert, A.: $L^p$ multipliers and nested sigma-algebras. Oper. Theory Adv. Appl. 104 (1998), 147-153. MR 1639653
[8] Lambert, A., Weinstock, B. M.: A class of operator algebras induced by probabilistic conditional expectations. Mich. Math. J. 40 (1993), 359-376. DOI 10.1307/mmj/1029004757 | MR 1226836 | Zbl 0820.46056
[9] Lambert, A.: Hyponormal composition operators. Bull. London Math. Soc. 18 (1986), 395-400. DOI 10.1112/blms/18.4.395 | MR 0838810 | Zbl 0624.47014
[10] Rao, M. M.: Conditional Measures and Applications. Marcel Dekker New York (1993). MR 1234936 | Zbl 0815.60001
[11] Takagi, H.: Fredholm weighted composition operators. Integral Equations Oper. Theory 16 (1993), 267-276. DOI 10.1007/BF01358956 | MR 1205002 | Zbl 0783.47048
[12] Takagi, H., Yokouchi, K.: Multiplication and composition operators between two $L^p$-spaces. Contemp. Math. 232 (1999), 321-338. DOI 10.1090/conm/232/03408 | MR 1678344
[13] Zaanen, A. C.: Integration, 2nd ed. North-Holland Amsterdam (1967). MR 0222234
Partner of
EuDML logo