Previous |  Up |  Next

Article

Keywords:
singular; four-point; positive solution; $p$-Laplacian
Summary:
In this paper we deal with the four-point singular boundary value problem $$ \begin {cases} (\phi _p(u'(t)))'+q(t)f(t,u(t),u'(t))=0,& t\in (0,1),\\ u'(0)-\alpha u(\xi )=0, \quad u'(1)+\beta u(\eta )=0, \end {cases} $$ where $\phi _p(s)=|s|^{p-2}s$, $p>1$, $0<\xi <\eta <1$, $\alpha ,\beta >0$, $q\in C[0,1]$, $q(t)>0$, $t\in (0,1)$, and $f\in C([0,1]\times (0,+\infty )\times \mathbb R,(0,+\infty ))$ may be singular at $u = 0$. By using the well-known theory of the Leray-Schauder degree, sufficient conditions are given for the existence of positive solutions.
References:
[1] Agarwal, R. P., O'Regan, D.: Nonlinear superlinear singular and nonsingular second order boundary value problems. J. Differ. Equations 143 (1998), 60-95. DOI 10.1006/jdeq.1997.3353 | MR 1604959 | Zbl 0902.34015
[2] Agarwal, R. P., O'Regan, D.: Existence theory for single and multiple solutions to singular positone boundary value problems. J. Differ. Equations 175 (2001), 393-414. DOI 10.1006/jdeq.2001.3975 | MR 1855974 | Zbl 0999.34018
[3] Agarwal, R. P., O'Regan, D.: Twin solutions to singular Dirichlet problems. J. Math. Anal. Appl. 240 (1999), 433-445. DOI 10.1006/jmaa.1999.6597 | MR 1731655 | Zbl 0946.34022
[4] Jiang, D., Chu, J., Zhang, M.: Multiplicity of positive periodic solutions to superlinear repulsive singular equations. J. Differ. Equations 211 (2005), 282-302. DOI 10.1016/j.jde.2004.10.031 | MR 2125544 | Zbl 1074.34048
[5] Ha, K., Lee, Y.: Existence of multiple positive solutions of singular boundary value problems. Nonlinear Anal. 28 (1997), 1429-1438. DOI 10.1016/0362-546X(95)00231-J | MR 1428660 | Zbl 0874.34016
[6] Khan, R. A.: Positive solutions of four-point singular boundary value problems. Appl. Math. Comput. 201 (2008), 762-773. DOI 10.1016/j.amc.2008.01.014 | MR 2431973 | Zbl 1152.34016
[7] Lan, K., Webb, J. L.: Positive solutions of semilinear differential equations with singularities. J. Differ. Equations 148 (1998), 407-421. DOI 10.1006/jdeq.1998.3475 | MR 1643199 | Zbl 0909.34013
[8] Liu, Y., Qi, A.: Positive solutions of nonlinear singular boundary value problem in abstract space. Comput. Math. Appl. 47 (2004), 683-688. DOI 10.1016/S0898-1221(04)90055-7 | MR 2051339 | Zbl 1070.34079
[9] Liu, B., Liu, L., Wu, Y.: Positive solutions for singular second order three-point boundary value problems. Nonlinear Anal. 66 (2007), 2756-2766. DOI 10.1016/j.na.2006.04.005 | MR 2311636 | Zbl 1117.34021
[10] Ma, D., Han, J., Chen, X.: Positive solution of three-point boundary value problem for the one-dimensional $p$-Laplacian with singularities. J. Math. Anal. Appl. 324 (2006), 118-133. DOI 10.1016/j.jmaa.2005.11.063 | MR 2262460 | Zbl 1110.34016
[11] Ma, D., Ge, W.: Positive solution of multi-point boundary value problem for the one-dimensional $p$-Laplacian with singularities. Rocky Mountain J. Math. 137 (2007), 1229-1249. DOI 10.1216/rmjm/1187453108 | MR 2360295 | Zbl 1139.34018
[12] Ma, D., Ge, W.: The existence of positive solution of multi-point boundary value problem for the one-dimensional $p$-Laplacian with singularities. Acta Mech. Sinica (Beijing) 48 (2005), 1079-1088. MR 2205048 | Zbl 1124.34308
[13] Rachůnková, I., Staněk, S., Tvrdý, M.: Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations. In: Handbook of Differential Equations. Ordinary Differential Equations, Vol. 3 A. Cañada, P. Drábek, A. Fonda Elsevier (2006), 607-723. MR 2457638
[14] Wei, Z., Pang, C.: Positive solutions of some singular $m$-point boundary value problems at non-resonance. Appl. Math. Comput. 171 (2005), 433-449. DOI 10.1016/j.amc.2005.01.043 | MR 2192885 | Zbl 1085.34017
[15] Xu, X.: Positive solutions for singular $m$-point boundary value problems with positive parameter. J. Math. Anal. Appl. 291 (2004), 352-367. DOI 10.1016/j.jmaa.2003.11.009 | MR 2034079 | Zbl 1047.34016
[16] Zhang, X., Liu, L.: Eigenvalue of fourth-order $m$-point boundary value problem with derivatives. Comput. Math. Appl. 56 (2008), 172-185. DOI 10.1016/j.camwa.2007.08.048 | MR 2427696 | Zbl 1145.34315
[17] Zhang, X., Liu, L.: Positive solutions of fourth-order four-point boundary value problems with $p$-Laplacian operator. J. Math. Anal. Appl. 336 (2007), 1414-1423. DOI 10.1016/j.jmaa.2007.03.015 | MR 2353024 | Zbl 1125.34018
Partner of
EuDML logo