[3] Curbera, G. P., García-Cuerva, J., Martell, J. M., Pérez, C.:
Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203 256-318 (2006).
DOI 10.1016/j.aim.2005.04.009 |
MR 2231047
[4] Evans, L. C.:
Partial Differential Equations. American Mathematical Society, Providence (1998).
MR 1625845 |
Zbl 0902.35002
[5] Farwig, R., Galdi, G. P., Sohr, H.:
Very weak solutions of stationary and instationary Navier-Stokes equations with nonhomogeneous data. Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser 64 113-136 (2005).
DOI 10.1007/3-7643-7385-7_7 |
MR 2185213
[7] Fröhlich, A.: Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenr�umen. Shaker Verlag, Aachen (2001).
[8] Fröhlich, A.:
The Stokes operator in weighted {$L^q$}-spaces I: Weighted estimates for the Stokes resolvent problem in a half space. J. Math. Fluid Mech. 5 166-199 (2003).
DOI 10.1007/s00021-003-0080-8 |
MR 1982327
[9] Fröhlich, A.:
The Stokes operator in weighted {$L^q$}-spaces {II}: Weighted resolvent estimates and maximal {$L^p$}-regularity. Math. Ann. 339 287-316 (2007).
DOI 10.1007/s00208-007-0114-2 |
MR 2324721
[11] García-Cuerva, J., Francia, J. L. Rubio de:
Weighted norm inequalities and related topics. North Holland, Amsterdam (1985).
MR 0807149
[13] Nečas, J.:
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967).
MR 0227584
[15] Slobodeckiǐ, L. N.:
Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningrad. Gos. Ped. Inst. Učen. Zap. 197 54-112 (1958).
MR 0203222
[16] Stein, E.:
Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. 43, Princeton University Press, Princeton, N.J. (1993).
MR 1232192 |
Zbl 0821.42001